Search results

1 – 10 of 320
Content available
Article
Publication date: 31 January 2023

Fabio Parisi, Valentino Sangiorgio, Nicola Parisi, Agostino M. Mangini, Maria Pia Fanti and Jose M. Adam

Most of the 3D printing machines do not comply with the requirements of on-site, large-scale multi-story building construction. This paper aims to propose the conceptualization of…

Abstract

Purpose

Most of the 3D printing machines do not comply with the requirements of on-site, large-scale multi-story building construction. This paper aims to propose the conceptualization of a tower crane (TC)-based 3D printing controlled by artificial intelligence (AI) as the first step towards a large 3D printing development for multi-story buildings. It also aims to overcome the most important limitation of additive manufacturing in the construction industry (the build volume) by exploiting the most important machine used in the field: TCs. It assesses the technology feasibility by investigating the accuracy reached in the printing process.

Design/methodology/approach

The research is composed of three main steps: firstly, the TC-based 3D printing concept is defined by proposing an aero-pendulum extruder stabilized by propellers to control the trajectory during the extrusion process; secondly, an AI-based system is defined to control both the crane and the extruder toolpath by exploiting deep reinforcement learning (DRL) control approach; thirdly the proposed framework is validated by simulating the dynamical system and analysing its performance.

Findings

The TC-based 3D printer can be effectively used for additive manufacturing in the construction industry. Both the TC and its extruder can be properly controlled by an AI-based control system. The paper shows the effectiveness of the aero-pendulum extruder controlled by AI demonstrated by simulations and validation. The AI-based control system allows for reaching an acceptable tolerance with respect to the ideal trajectory compared with the system tolerance without stabilization.

Originality/value

In related literature, scientific investigations concerning the use of crane systems for 3D printing and AI-based systems for control are completely missing. To the best of the authors’ knowledge, the proposed research demonstrates for the first time the effectiveness of this technology conceptualized and controlled with an intelligent DRL agent.

Practical implications

The results provide the first step towards the development of a new additive manufacturing system for multi-storey constructions exploiting the TC-based 3D printing. The demonstration of the conceptualization feasibility and the control system opens up new possibilities to activate experimental research for companies and research centres.

Details

Construction Innovation , vol. 24 no. 1
Type: Research Article
ISSN: 1471-4175

Keywords

Open Access
Article
Publication date: 20 March 2024

Guijian Xiao, Tangming Zhang, Yi He, Zihan Zheng and Jingzhe Wang

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding…

Abstract

Purpose

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding and polishing of additive titanium alloy blades to ensure the surface integrity and machining accuracy of the blades.

Design/methodology/approach

At present, robot grinding and polishing are mainstream processing methods in blade automatic processing. This review systematically summarizes the processing characteristics and processing methods of additive manufacturing (AM) titanium alloy blades. On the one hand, the unique manufacturing process and thermal effect of AM have created the unique processing characteristics of additive titanium alloy blades. On the other hand, the robot grinding and polishing process needs to incorporate the material removal model into the traditional processing flow according to the processing characteristics of the additive titanium alloy.

Findings

Robot belt grinding can solve the processing problem of additive titanium alloy blades. The complex surface of the blade generates a robot grinding trajectory through trajectory planning. The trajectory planning of the robot profoundly affects the machining accuracy and surface quality of the blade. Subsequent research is needed to solve the problems of high machining accuracy of blade profiles, complex surface material removal models and uneven distribution of blade machining allowance. In the process parameters of the robot, the grinding parameters, trajectory planning and error compensation affect the surface quality of the blade through the material removal method, grinding force and grinding temperature. The machining accuracy of the blade surface is affected by robot vibration and stiffness.

Originality/value

This review systematically summarizes the processing characteristics and processing methods of aviation titanium alloy blades manufactured by AM. Combined with the material properties of additive titanium alloy, it provides a new idea for robot grinding and polishing of aviation titanium alloy blades manufactured by AM.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 7 March 2023

Solomon O. Obadimu and Kyriakos I. Kourousis

Honeycombs enjoy wide use in various engineering applications. The emergence of additive manufacturing (AM) as a method of customisable of parts has enabled the reinvention of the…

1172

Abstract

Purpose

Honeycombs enjoy wide use in various engineering applications. The emergence of additive manufacturing (AM) as a method of customisable of parts has enabled the reinvention of the honeycomb structure. However, research on in-plane compressive performance of both classical and new types of honeycombs fabricated via AM is still ongoing. Several important findings have emerged over the past years, with significance for the AM community and a review is considered necessary and timely. This paper aims to review the in-plane compressive performance of AM honeycomb structures.

Design/methodology/approach

This paper provides a state-of-the-art review focussing on the in-plane compressive performance of AM honeycomb structures, covering both polymers and metals. Recently published studies, over the past six years, have been reviewed under the specific theme of in-plane compression properties.

Findings

The key factors influencing the AM honeycombs' in-plane compressive performance are identified, namely the geometrical features, such as topology shape, cell wall thickness, cell size and manufacturing parameters. Moreover, the techniques and configurations commonly used for geometry optimisation toward improving mechanical performance are discussed in detail. Current AM limitations applicable to AM honeycomb structures are identified and potential future directions are also discussed in this paper.

Originality/value

This work evaluates critically the primary results and findings from the published research literature associated with the in-plane compressive mechanical performance of AM honeycombs.

Details

International Journal of Structural Integrity, vol. 14 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Content available
Article
Publication date: 1 October 1998

241

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 70 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

Content available
Article
Publication date: 25 November 2013

Heidi Hanson and Zoe Stewart-Marshall

430

Abstract

Details

Library Hi Tech News, vol. 30 no. 10
Type: Research Article
ISSN: 0741-9058

Content available
Article
Publication date: 1 March 1999

Glen Holt

107

Abstract

Details

The Bottom Line, vol. 12 no. 1
Type: Research Article
ISSN: 0888-045X

Keywords

Open Access
Article
Publication date: 7 December 2023

Elena Vazquez

Algorithmic and computational thinking are necessary skills for designers in an increasingly digital world. Parametric design, a method to construct designs based on algorithmic…

Abstract

Purpose

Algorithmic and computational thinking are necessary skills for designers in an increasingly digital world. Parametric design, a method to construct designs based on algorithmic logic and rules, has become widely used in architecture practice and incorporated in the curricula of architecture schools. However, there are few studies proposing strategies for teaching parametric design into architecture students, tackling software literacy while promoting the development of algorithmic thinking.

Design/methodology/approach

A descriptive study and a prescriptive study are conducted. The descriptive study reviews the literature on parametric design education. The prescriptive study is centered on proposing the incomplete recipe as instructional material and a new approach to teaching parametric design.

Findings

The literature on parametric design education has mostly focused on curricular discussions, descriptions of case studies or studio-long approaches; day-to-day instructional methods, however, are rarely discussed. A pedagogical strategy to teach parametric design is introduced: the incomplete recipe. The instructional method proposed provides students with incomplete recipes for parametric scripts that are increasingly pared down as the students become expert users.

Originality/value

The article contributes to the existing literature by proposing the incomplete recipe as a strategy for teaching parametric design. The recipe as a pedagogical tool provides a means for both software skill acquisition and the development of algorithmic thinking.

Details

Open House International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0168-2601

Keywords

Content available
Book part
Publication date: 3 June 2019

Abstract

Details

Smart Villages in the EU and Beyond
Type: Book
ISBN: 978-1-78769-846-8

Open Access
Article
Publication date: 19 March 2021

Dandan Qiu, Lei Luo, Zhiqi Zhao, Songtao Wang, Zhongqi Wang and Bengt Ake Sunden

The purpose of this study is to investigate the effects of film holes’ arrangements and jet Reynolds number on flow structure and heat transfer characteristics of jet impingement…

1083

Abstract

Purpose

The purpose of this study is to investigate the effects of film holes’ arrangements and jet Reynolds number on flow structure and heat transfer characteristics of jet impingement conjugated with film cooling in a semicylinder double wall channel.

Design/methodology/approach

Numerical simulations are used in this research. Streamlines on different sections, skin-friction lines, velocity, wall shear stress and turbulent kinetic energy contours near the concave target wall and vortices in the double channel are presented. Local Nusselt number contours and surface averaged Nusselt numbers are also obtained. Topology analysis is applied to further understand the fluid flow and is used in analyzing the heat transfer characteristics.

Findings

It is found that the arrangement of side films positioned far from the center jets helps to enhance the flow disturbance and heat transfer behind the film holes. The heat transfer uniformity for the case of 55° films arrangement angle is most improved and the thermal performance is the highest in this study.

Originality/value

The film holes’ arrangements effects on fluid flow and heat transfer in an impingement cooled concave channel are conducted. The flow structures in the channel and flow characteristics near target by topology pictures are first obtained for the confined film cooled impingement cases. The heat transfer distributions are analyzed with the flow characteristics. The highest heat transfer uniformity and thermal performance situation is obtained in present work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 320