Search results

1 – 10 of 32
Article
Publication date: 18 July 2023

Chaofan Jia, Shaolin Li, Xiuhua Guo, Juanhua Su and Kexing Song

The effect of different service parameters on the current-carrying tribological properties of CF-Al2O3/Cu composites was investigated, and the damage behavior of the composites…

52

Abstract

Purpose

The effect of different service parameters on the current-carrying tribological properties of CF-Al2O3/Cu composites was investigated, and the damage behavior of the composites under different service parameters was probed. The purpose of this study is to provide a theoretical basis for the application of CF-Al2O3/Cu composites.

Design/methodology/approach

The composites were fabricated by internal oxidation combined with powder metallurgy. The current-carrying tribological properties of CF-Al2O3/Cu composites were investigated on an electrical damage test system at different loads and currents.

Findings

As the load increases, the wear mechanism of the composite changes from abrasive wear to delamination wear. As the current increases, the oxidation wear and arc erosion of the composites gradually intensified. Under the service parameters of 0–25 A and 30–40 N, the composite has relatively stable current-carrying tribological properties.

Originality/value

This paper could provide a theoretical basis for the practical application of CF-Al2O3/Cu composites.

Details

Industrial Lubrication and Tribology, vol. 75 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 19 May 2021

Yanqiu Xia, Yanan Cao, Xin Feng and Haris M_ P_

The purpose of this paper is to compare the electrical conductivity and tribological properties of magnetron sputtered silver (Ag), copper (Cu) and aluminum (Al) thin films under…

Abstract

Purpose

The purpose of this paper is to compare the electrical conductivity and tribological properties of magnetron sputtered silver (Ag), copper (Cu) and aluminum (Al) thin films under conductive grease lubrication.

Design/methodology/approach

Three types of silver (Ag), copper (Cu) and aluminum (Al) thin films were prepared by magnetron sputtering. Current-carrying friction tests were carried out by a ball-on-plate reciprocating friction and wear tester. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX) were used to observe and analyze the worn surface and cross-section morphology of the films.

Findings

Silver and Cu films exhibited good conductivity and tribological properties, which were mainly attributed to the synergy of the protective tribofilm generated by conductive grease, current-induced thermal effect and magnetron sputtered films effect. Al film was worn through. Large pitting storing lubricate were only found in Ag film. Cu film showed a similar surface uniformity with Ag film.

Originality/value

This study provides a reference for the design and application of conductive grease and investigates the current-carrying friction behaviors of magnetron sputtered films as electrical contact materials. The comparison of current-carrying friction behaviors of the three films was rarely covered in previous studies.

Details

Industrial Lubrication and Tribology, vol. 73 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 18 January 2024

Minglang Zhang, Xue Zuo and Yuankai Zhou

The purpose of this paper is to reveal the dynamic contact characteristics of the slip ring. Dynamic contact resistance models considering wear and self-excited were established…

Abstract

Purpose

The purpose of this paper is to reveal the dynamic contact characteristics of the slip ring. Dynamic contact resistance models considering wear and self-excited were established based on fractal theory.

Design/methodology/approach

The effects of tangential velocity, stiffness and damping coefficient on dynamic contact resistance are studied. The relationships between fractal parameters, wear time and contact parameters are revealed.

Findings

The results show that the total contact area decreases with the friction coefficient and fractal roughness under the same load. Self-excited vibration occurs at a low speed (less than 0.6 m/s). It transforms from stick-slip motion at 0.4 m/s to pure sliding at 0.5 m/s. A high stiffness makes contact resistance fluctuate violently, while increasing the damping coefficient can suppress the self-excited vibration and reduce the dynamic contact resistance. The fractal contact resistance model considering wear is established based on the fractal parameters models. The validity of the model is verified by the wear tests.

Originality/value

The results have a great significance to study the electrical contact behavior of conductive slip ring.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-09-2023-0300/

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 31 October 2022

Xianchen Yang, Xinmei Li and Songchen Wang

Conventional wear models cannot satisfy the requirements of electrical contact wear simulation. Therefore, this study aims to establish a novel wear simulation model that…

Abstract

Purpose

Conventional wear models cannot satisfy the requirements of electrical contact wear simulation. Therefore, this study aims to establish a novel wear simulation model that considered the influence of thermal-stress-wear interaction to achieve high accuracy under various current conditions, especially high current.

Design/methodology/approach

The proposed electrical contact wear model was established by combining oxidation theory and the modified Archard wear model. The wear subroutine was written in FORTRAN, and adaptive mesh technology was used to update the wear depth. The simulation results were compared with the experimental results and the typically used stress-wear model. The temperature of the contact surface, distribution of the wear depth and evolution of the wear rate were analyzed.

Findings

With the increase in the current flow, the linear relationship between the wear depth and time changed to the parabola. Electrical contact wear occurred in two stages, namely, acceleration and stability stages. In the acceleration stage, the wear rate increased continuously because of the influence of material hardness reduction and oxidation loss.

Originality/value

In previous wear simulation models, the influence of multiple physical fields in friction and wear has been typically ignored. In this study, the oxidation loss during electrical contact wear was considered, and the thermo-stress-wear complete coupling method was used to analyze the wear process.

Details

Industrial Lubrication and Tribology, vol. 75 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 May 2020

Song Xiao, Yuanpei Luo, Jingchi Wu, Can Zhang, Yang Rao, Guangning Wu and Jan Sykulski

In high-speed trains, the energy is supplied from a high voltage catenary to the vehicle via a pantograph catenary system (PCS). Carbon pantograph strips must maintain continuous…

Abstract

Purpose

In high-speed trains, the energy is supplied from a high voltage catenary to the vehicle via a pantograph catenary system (PCS). Carbon pantograph strips must maintain continuous contact with the wire to ensure safety and reliability. The contact is often confined to a particular spot, resulting in excessive wear due to mechanical and thermal damage, exacerbated by the presence of an electric arc and associated electrochemical corrosion. The effectiveness and reliability of the PCS impacts on the performance and safety of HSTs, especially under high-speed conditions. To alleviate some of these adverse effects, this paper aims to propose a configuration where a circular PCS replaces the currently used pantograph strips.

Design/methodology/approach

Two dynamic multi-physics models of a traditional PCS with a carbon strip and a novel PCS with a circular pantograph strip catenary system are established, and the electrical and mechanical characteristics of these two systems are compared. Moreover, a PCS experimental platform is designed to verify the validity and accuracy of the multi-physics model.

Findings

A novel circular pantograph system is proposed in this paper to alleviate some of the shortcomings of the traditional PCS. Comparing with a traditional PCS, the circular PCS exhibits superior performance in both electromagnetic and thermal aspects.

Originality/value

The paper offers a new technical solution to the PCS and develops a dedicated multi-physics model for analysis and performance prediction with the aim to improve the performance of the PCS. The new system offers numerous benefits, such as less friction heat, better heat dispersion and improved catenary-tracking performance.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 15 April 2022

Yubo Yang, Xiuhua Guo, Kexing Song, Fei Long, Xu Wang, Shaolin Li and Zhou Li

Copper matrix composites are widely used in high-voltage switches, electrified railways and other electric friction fields. The purpose of this study is to improve its wear…

148

Abstract

Purpose

Copper matrix composites are widely used in high-voltage switches, electrified railways and other electric friction fields. The purpose of this study is to improve its wear resistance and investigate the effect of hybrid carbon nanotubes (CNTs) and titanium diboride (TiB2) particles reinforced copper matrix composites on electrical wear performance.

Design/methodology/approach

CNTs and TiB2 particles were introduced into copper matrix simultaneously by powder metallurgy combined with electroless copper plating. Electrical wear performance of the composites was studied on self-made pin on disk electrical wear tester.

Findings

The results show that the friction coefficient and wear rate of (1CNTs–4TiB2)/Cu composite are respectively reduced by 40% and 25.3%, compared with single TiB2/Cu composites. The micron-sized TiB2 particles can hinder the plastic deformation of composites, and bear part of the load to weaken the wear rate of composites. CNTs with the self-lubricating property can form lubricating layer to reduce the friction coefficient of composites.

Originality/value

This work can provide a design method for further improving the wear properties of TiB2/Cu composites.

Details

Industrial Lubrication and Tribology, vol. 74 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 April 2010

S.Z. Shuja, B.S. Yilbas and M. Kassas

The purpose of this paper is to study flow over two heat generating porous blocks situated in a cavity, and examine the effects of porous blocks geometric orientations in the…

Abstract

Purpose

The purpose of this paper is to study flow over two heat generating porous blocks situated in a cavity, and examine the effects of porous blocks geometric orientations in the cavity (configurations) and the amount of heat generation in the blocks on entropy generation rate due to heat transfer and fluid flow.

Design/methodology/approach

Four configurations of blocks and three heat fluxes are accommodated in the simulations. The equilibrium flow equations are used to compute the flow field. Entropy generation in the flow system due to fluid friction and heat transfer is also computed. A control volume approach is used to discretize the governing equations of flow and heat transfer. In the simulations, flow Reynolds number is kept 100 at cavity inlet and blocks' porosity is set to 0.9726.

Findings

The volumetric entropy generation rate attains high values around the blocks and configuration 4 results in reasonably low values of entropy generation rate due to heat transfer and fluid flow.

Research limitations/implications

The simulations are limited to low Reynolds numbers due to practical applications. However, at high Reynolds numbers, flow separation in the cavity results in complex flow structure, which is difficult to simulate.

Practical implications

The thermodynamic irreversibility of the thermal system in the cavity becomes low for certain configuration of blocks in the cavity. The power loss, in this case, becomes less.

Originality/value

The work introduces original findings for cooling applications. When porous blocks are used for electronic cooling, the blocks configurations are very important. This is clearly demonstrated in this study.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 20 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 September 2019

Mahantesh M. Nandeppanavar, T. Srinivasulu and Shanker Bandari

The purpose of this paper is to study the flow, heat and mass transfer of MHD Casson nanofluid due to an inclined stretching sheet using similarity transformation, the governing…

Abstract

Purpose

The purpose of this paper is to study the flow, heat and mass transfer of MHD Casson nanofluid due to an inclined stretching sheet using similarity transformation, the governing PDE’S equations of flow, heat and mass transfer are converted into ODE’S. The resulting non-linear ODE’S are solved numerically using an implicit finite difference method, which is known as Kellor-box method. The effects of various governing parameters on velocity, temperature and concentration are plotted for both Newtonian and non-Newtonian cases. The numerical values of skin friction, Nusselt number and Sherwood number are calculated and tabulated in various tables for different values of physical parameters. It is noticed that the effect of angle of inclination enhances the temperature and concentration profile whereas velocity decreases. The temperature decreases due to the increase in the parametric values of Pr and Gr due to thickening in the boundary layer.

Design/methodology/approach

Numerical method is applied to find the results.

Findings

Flow and heat transfer analysis w.r.t various flow and temperature are analyzed for different values of the physical parameters.

Research limitations/implications

The numerical values of skin friction, Nusselt number and Sherwood number are calculated and tabulated in various tables for different values of physical parameters.

Practical implications

The study of the boundary layer flow, heat and mass transfer is important due to its applications in industries and many manufacturing processes such as aerodynamic extrusion of plastic sheets and cooling of metallic sheets in a cooling bath.

Originality/value

Here in this paper the authors have investigated the MHD boundary layer flow of a Casson nanofluid over an inclined stretching sheet along with the Newtonian nanofluid as a limited.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 August 1941

AN alloy for which many uses are predicted in the aircraft industry is beryllium copper. The best known applications so far are found in instrument parts, beryllium copper being…

Abstract

AN alloy for which many uses are predicted in the aircraft industry is beryllium copper. The best known applications so far are found in instrument parts, beryllium copper being non‐magnetic, and in adjustable‐pitch propeller hub cones and retractable landing gear parts, where good wear resistance is required. The alloy also has possibilities in the working of magnesium. In magnesium working machines must be kept free from chips, tools must be kept sharp, and plenty of lubrication must be provided to avoid fire. Special tools have been designed to keep down friction heat, and they should be used in working with magnesium. These tools have wider clearance angles and their surfaces are smaller than tools used with other materials. The comparatively high hardness and shock resistance of beryllium copper permits it to be used for non‐sparking hand tools such as hammers, chisels, wrenches, wrecking bars, drift pins and scrapers.

Details

Aircraft Engineering and Aerospace Technology, vol. 13 no. 8
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 May 1972

C.M. Taylor

The main types of fluid film bearing, irrespective of lubricant, are those relying on surface motion to generate the fluid film pressure and hence load capacity (hydrodynamic…

Abstract

The main types of fluid film bearing, irrespective of lubricant, are those relying on surface motion to generate the fluid film pressure and hence load capacity (hydrodynamic lubrication—or aerodynamic for gases), and those relying on an external supply of pressurized lubricant (hydrostatic or aerostatic lubrication). A bearing employing a mixture of the two lubrication modes is said to be hybrid. A special case of self‐acting bearings is the squeeze film bearing in which fluid pressure is generated due to the normal motion of the bearing surfaces. Particular bearing geometries will not be discussed.

Details

Industrial Lubrication and Tribology, vol. 24 no. 5
Type: Research Article
ISSN: 0036-8792

1 – 10 of 32