Search results

1 – 10 of over 10000
To view the access options for this content please click here
Article
Publication date: 23 August 2019

Ryszard Palka and Rafal Piotuch

Predictive controllers and permanent magnet synchronous motors (PMSMs) got more attention over the past decades thanks to their applicable features. This paper aims to…

Downloads
72

Abstract

Purpose

Predictive controllers and permanent magnet synchronous motors (PMSMs) got more attention over the past decades thanks to their applicable features. This paper aims to propose and verify a method to design a predictive current controller with consideration of motor characteristics obtained from finite element analysis (FEA).

Design/methodology/approach

Permanent magnet motor parameters and its maps can be calculated by means of FEA. The model takes into account magnetic saturation and thermal electro-magnetic properties. For each dq current vector and each position, self and mutual inductances are calculated. Based on co-energy method and fundamentals of coordinate transformation dynamic and static, dq inductances are obtained. These are used in classical and modified dead-beat current controller equations.

Findings

To sustain good features of a controller over higher current regions, it is necessary to adapt control law of a dead-beat controller. After its modification, control quality can be superior over classical solution in high saturation regions. The transient simulations of controller and motor give accurate results.

Originality/value

Common predictive current controllers use nominal motor parameters in their equations. The authors proposed a modified dead-beat current controller to improve the control quality. There is no need to apply self-tuning algorithms, and implementation of the controller is not much more complicated than that of the classical controller. Designer of a control system can obtain required data from motor designer; in design process of modern machines such data are often already available. The proposed methodology increases control quality of the presented dead-beat controller.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article
Publication date: 3 August 2020

Ramanjaneyulu Alla and Anandita Chowdhury

A new control method is proposed for grid integration of improved hybrid three quasi z source converter (IHTQZSC). The proposed controller provides a constant switching…

Abstract

Purpose

A new control method is proposed for grid integration of improved hybrid three quasi z source converter (IHTQZSC). The proposed controller provides a constant switching frequency with an improved dynamic response with fewer computations. The proposed constant switching frequency predictive controller (CSF-PC) does not need weighting factors and reduces the complexity of the control circuit.

Design/methodology/approach

A single PI controller is intended to control voltage across dc-link by generating the necessary shoot-through duty ratio. The predictive controller produces the modulating signals required to inject the desired grid current. The performance of the proposed controller is validated with MATLAB/Simulink software.

Findings

The discrete-time instantaneous model on the grid side in the proposed controller influences the inductor current with minimum ripples. Dynamic response and computational complexity of the converter with the PI controller, finite set model predictive controller (FS-MPC) and the proposed controller are discussed.

Practical implications

The converter belongs to impedance source converters (ISC) family, delivers higher voltage gain in a single-stage power conversion process, extract the energy from the intermittent nature of renewable energy conversion systems. Implementing CSF-PC for ISC is simple, as it has a single PI controller.

Originality/value

Grid integration of high voltage gain IHTQZSC is accomplished with PI, FS-MPC and CSF-PC. Though the FS-MPC exhibits superior dynamic response under input voltage disturbance and grid current variation, total harmonic distortion (THD) in the grid current is high. CSF-PC provides better THD with a good dynamic response with reduced inductor current ripples.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article
Publication date: 28 October 2014

Vasundhara Mahajan, Pramod Agarwal and Hari Om Gupta

The active power filter with two-level inverter needs a high-rating coupling transformer for high-power applications. This complicates the control and system becomes bulky…

Abstract

Purpose

The active power filter with two-level inverter needs a high-rating coupling transformer for high-power applications. This complicates the control and system becomes bulky and expensive. The purpose of this paper is to motivate the use of multilevel inverter as harmonic filter, which eliminates the coupling transformer and allows direct control of the power circuit. The advancement in artificial intelligence (AI) for computation is explored for controller design.

Design/methodology/approach

The proposed scheme has a five-level cascaded H-bridge multilevel inverter (CHBMLI) as a harmonic filter. The control scheme includes one neural network controller and two fuzzy logic-based controllers for harmonic extraction, dc capacitor voltage balancing, and compensating current adjustment, respectively. The topology is modeled in MATLAB/SIMULINK and implemented using dSPACE DS1103 interface for experimentation.

Findings

The exhaustive simulation and experimental results demonstrate the robustness and effectiveness of the proposed topology and controllers for harmonic minimization for RL/RC load and change in load. The comparison between traditional PI controller and proposed AI-based controller is presented. It indicates that the AI-based controller is fast, dynamic, and adaptive to accommodate the changes in load. The total harmonic distortion obtained by applying AI-based controllers are well within the IEEE519 std. limits.

Originality/value

The simulation of high-power, medium-voltage system is presented and a downscaled prototype is designed and developed for implementation. The laboratory module of CHBMLI-based harmonic filter and AI-based controllers modeled in SIMULINK is executed using dSPACE DS1103 interface through real time workshop.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article
Publication date: 27 September 2021

Swati Sucharita Pradhan, Raseswari Pradhan and Bidyadhar Subudhi

The dynamics of the PV microgrid (PVMG) system are highly nonlinear and uncertain in nature. It is encountered with parametric uncertainties and disturbances. This system…

Abstract

Purpose

The dynamics of the PV microgrid (PVMG) system are highly nonlinear and uncertain in nature. It is encountered with parametric uncertainties and disturbances. This system cannot be controlled properly by conventional linear controllers. H controller and sliding mode controller (SMC) may capable of controlling it with ease. Due to its inherent dynamics, SMC introduces unwanted chattering into the system output waveforms. This paper aims to propose a controller to reduce this chattering.

Design/methodology/approach

This paper presents redesign of the SMC by modifying its sliding surface and tuning its parameters by employing water-evaporation-optimization (WEO) based metaheuristic algorithm.

Findings

By using this proposed water-evaporation-optimization algorithm-double integral sliding mode controller (WEOA-DISMC), the chattering magnitude is diminished greatly. Further, to examine which controller between H8 controller and proposed WEOA-DISMC performs better in both normal and uncertain situations, a comparative analysis has been made in this paper. The considered comparison parameters are reference tracking, disturbance rejection and robust stability.

Originality/value

WEO tuned DISMC for PVMG system is the contribution.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article
Publication date: 9 May 2008

Servet Tuncer and Beşir Dandil

The paper aims to propose an adaptive and robust on‐line trained neuro‐fuzzy current controller based on indirect field oriented control (IFOC) for the current control of…

Abstract

Purpose

The paper aims to propose an adaptive and robust on‐line trained neuro‐fuzzy current controller based on indirect field oriented control (IFOC) for the current control of multilevel inverter fed induction motor (IM).

Design/methodology/approach

Torque current of IM is controlled with Sugeno type neuro‐fuzzy controller (NFC) which has the ability of self tuning against parameter variations and load disturbance. Input variables of the neuro‐fuzzy current controller are chosen error and integral of error in order to eliminate steady state error. The consequent parameters of neuro‐fuzzy current controller are trained on‐line through backpropagation learning algorithm.

Findings

The validity of proposed current control algorithm is shown with experimental results carried out under different speed commands, parameter variations and load disturbances. The experimental results show that control performance of NFC in the current control of IMs is satisfactory because of its adaptive and robust structure.

Originality/value

This paper presents the design of an on‐line trained neuro‐fuzzy current control to improve the current control performance. The performance of the current controller largely depends on using converter systems. In this study, a multilevel inverter is used to obtain less harmonic distortion and near sinusoidal form of output voltage and current waveforms of the converter.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 27 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article
Publication date: 1 December 1999

Krzysztof Zawirski, Konrad Urbański and Jacek Ferenc

In the paper an application of fuzzy logic controller (FLC) for control of thyristor DC drive is presented. During synthesis of the FLC a robustness against variation of…

Abstract

In the paper an application of fuzzy logic controller (FLC) for control of thyristor DC drive is presented. During synthesis of the FLC a robustness against variation of structure of the current control plant was taken into account. Comparison between the fuzzy control system and an ordinary digital control system, carried out by simulation method, proved that FLC as a robust controller gives better performance in the range where non‐linearity and parameter variation is observed. The simulation results were confirmed by the laboratory experiment.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 18 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article
Publication date: 1 August 2016

Ying-Shieh Kung, Seng-Chi Chen, Jin-Mu Lin and Tsung-Chun Tseng

The purpose of this paper is to integrate the function of a speed controller for induction motor (IM) drive, such as the speed PI controller, the current vector controller

Abstract

Purpose

The purpose of this paper is to integrate the function of a speed controller for induction motor (IM) drive, such as the speed PI controller, the current vector controller, the slip speed estimator, the space vector pulse width modulation scheme, the quadrature encoder pulse, and analog to digital converter interface circuit, etc. into one field programmable gate array (FPGA).

Design/methodology/approach

First, the mathematical modeling of an IM drive, the field-oriented control algorithm, and PI controller are derived. Second, the very high speed IC hardware description language (VHDL) is adopted to describe the behavior of the algorithms above. Third, based on electronic design automation simulator link, a co-simulation work constructed by ModelSim and Simulink is applied to verify the proposed VHDL code for the speed controller intellectual properties (IP). Finally, the developed VHDL code will be downloaded to the FPGA for further control the IM drive.

Findings

In realization aspect, it only needs 5,590 LEs, 196,608 RAM bits, and 14 embedded 9-bit multipliers in FPGA to build up a speed control IP. In computational power aspect, the operation time to complete the computation of the PI controller, the slip speed estimator, the current vector controller are only 0.28 μs, 0.72 μs, and 0.96 μs, respectively.

Practical implications

Fast computation in FPGA can speed up the speed response of IM drive system to increase the running performance.

Originality/value

This is the first time to realize all the function of a speed controller for IM drive within one FPGA.

Details

Engineering Computations, vol. 33 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

To view the access options for this content please click here
Article
Publication date: 23 August 2021

Murali Dasari, A. Srinivasula Reddy and M. Vijaya Kumar

The principal intention behind the activity is to regulate the speed, current and commutation of the brushless DC (BLDC) motor. Thereby, the authors can control the torque.

Abstract

Purpose

The principal intention behind the activity is to regulate the speed, current and commutation of the brushless DC (BLDC) motor. Thereby, the authors can control the torque.

Design/methodology/approach

In order to regulate the current and speed of the motor, the Multi-resolution PID (MRPID) controller is proposed. The altered Landsman converter is utilized in this proposed suppression circuit, and the obligation cycle is acclimated to acquire the ideal DC-bus voltage dependent on the speed of the BLDC motor. The adaptive neuro-fuzzy inference system-elephant herding optimization (ANFIS-EHO) calculation mirrors the conduct of the procreant framework in families.

Findings

Brushless DC motor's dynamic properties are created, noticed and examined by MATLAB/Simulink model. The performance will be compared with existing genetic algorithms.

Originality/value

The presented approach and performance will be compared with existing genetic algorithms and optimization of different structure of BLDC motor.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 14 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

To view the access options for this content please click here
Article
Publication date: 2 October 2017

Fiaz Ahmad, Akhtar Rasool, Esref Emre Ozsoy, Asif Sabanoviç and Meltem Elitas

This paper aims to propose a robust cascaded controller based on proportional-integral (PI) and continuous sliding mode control.

Abstract

Purpose

This paper aims to propose a robust cascaded controller based on proportional-integral (PI) and continuous sliding mode control.

Design/methodology/approach

Cascaded control structure is an attractive control scheme for DC-DC power converters. It has a two-loop structure where the outer loop contains PI controller and the inner loop uses sliding mode control (SMC). This structure thus combines the merits of both the control schemes. However, there are some issues that have prohibited its adoption in industry, the discontinuous nature of SMC which leads to variable switching frequency operation and is hard to realize practically. This paper attempts to overcome this issue by changing the discontinuous functionality of SMC to continuous by utilizing the concept of equivalent control.

Findings

The robustness of the controller designed is verified by considering various cases, namely, ideal case with no uncertainties, sudden variation of input supply voltage, load resistance, reference voltage, circuit-parameters and for noise disturbance. The controller effectiveness is validated by simulating the DC-DC boost and Cuk converters in SimPowerSystems toolbox of MATLAB/Simulink. It is shown that the performance of the proposed controller is satisfactory, and both reference output voltage and inductor current are tracked with little or no sensitivity to disturbances.

Originality/value

The results for various scenarios are interesting and show that the controller works quite satisfactorily for all the simulated uncertainties.

Details

World Journal of Engineering, vol. 14 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

To view the access options for this content please click here
Article
Publication date: 3 December 2018

Mohsen Karimi, Mohammad Pichan, Adib Abrishamifar and Mehdi Fazeli

This paper aims to propose a novel integrated control method (ICM) for high-power-density non-inverting interleaved buck-boost DC-DC converter. To achieve high power…

Abstract

Purpose

This paper aims to propose a novel integrated control method (ICM) for high-power-density non-inverting interleaved buck-boost DC-DC converter. To achieve high power conversion by conventional single phase DC-DC converter, inductor value must be increased. This converter is not suitable for industrial and high-power applications as large inductor value will increase the inductor current ripple. Thus, two-phase non-inverting interleaved buck-boost DC-DC converter is proposed.

Design/methodology/approach

The proposed ICM approach is based on the theory of integrated dynamic modeling of continuous conduction mode (CCM), discontinuous conduction mode and synchronizing parallel operation mode. In addition, it involves the output voltage controller with inner current loop (inductor current controller) to make a fair balancing between two stages. To ensure fast transient performance, proposed digital ICM is implemented based on a TMS320F28335 digital signal microprocessor.

Findings

The results verify the effectiveness of the proposed ICM algorithm to achieve high voltage regulating (under 0.01 per cent), very low inductor current ripple (for boost is 1.96 per cent, for buck is 1.1) and fair input current balance between two stages (unbalancing current less than 0.5A).

Originality/value

The proposed new ICM design procedure is developed satisfactorily to ensure fast transient response even under high load variation and the solving R right-half-plane HP zeros of the CCM. In addition, the proposed method can equally divide the input current of stages and stable different parallel operation modes with large input voltage variations.

1 – 10 of over 10000