Search results

1 – 10 of over 14000
Article
Publication date: 1 April 2006

Masahiro Inoue and Katsuaki Suganuma

This paper investigates the variations in electrical properties of a typical isotropic conductive adhesive (ICA) made with an epoxy‐based binder that are caused by differences in…

Abstract

Purpose

This paper investigates the variations in electrical properties of a typical isotropic conductive adhesive (ICA) made with an epoxy‐based binder that are caused by differences in the curing conditions.

Design/methodology/approach

In‐situ monitoring of the various processes that were used to cure the ICA revealed that electrical conduction in the ICA specimens depends on both the high‐temperature curing conditions and the conditions during cooling to temperatures below the glass transition temperature (Tg).

Findings

The electrical resistivity of the cured ICA specimens after cooling to ambient temperature decreased with increasing degree of conversion, tending towards a convergence value that decreased with increasing curing temperature. The electrical resistivity of the specimens also varied significantly depending on the subsequent annealing process. However, the electrical resistivity achieved after annealing at temperatures above the curing temperatures clearly depended on the particular curing temperature that was used. The characteristics of the polymer structure in the adhesive binder are considered to be different, depending on the curing temperature, and this affects the electrical properties of the ICA;, i.e. the characteristics of the polymer structure obtained during the curing process affect the electrical resistance of the ICA, even after subsequent annealing processes.

Research limitations/implications

This paper discusses generalities of variation in the electrical properties of ICAs during heating and cooling processes. The variation in behaviour in practice will differ depending on the type of adhesive binder in the ICA.

Originality/value

This paper clarifies how the electrical properties of ICAs evolve during the curing, annealing and cooling processes.

Details

Soldering & Surface Mount Technology, vol. 18 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 26 April 2011

Yong Chen, Chi Zhou and Jingyuan Lao

Most current additive manufacturing (AM) processes are layer based. By converting a three‐dimensional model into two‐dimensional layers, the process planning can be dramatically…

2297

Abstract

Purpose

Most current additive manufacturing (AM) processes are layer based. By converting a three‐dimensional model into two‐dimensional layers, the process planning can be dramatically simplified. However, there are also drawbacks associated with such an approach such as inconsistent material properties and difficulty in embedding existing components. The purpose of this paper is to present a novel AM process that is non‐layer based and demonstrate its unique capability.

Design/methodology/approach

An AM process named computer numerically controlled (CNC) accumulation has been developed. In such a layerless AM process, a fiber optic‐cable connected with an ultraviolet (UV) LED and related lens is served as an accumulation tool. The cable is then merged inside a tank that is filled with UV‐curable liquid resin. By controlling the on/off state of the UV‐LED and the multi‐axis motion of the cable, a physical model can be built by selectively curing liquid resin into solid.

Findings

It is found that the cured resin can be safely detached from the accumulation tool by applying a Teflon coating on the tip of the fiber‐optic cable, and controlling an appropriate gap between the cable and the base. The experimental results verified the curing and attaching force models.

Research limitations/implications

A proof‐of‐concept testbed has been developed based on a curing tool that has a diameter around 2 mm. The relatively large tool size limits the geometry resolution and part quality of the built parts.

Originality/value

By incorporating multi‐axis tool motion, the CNC accumulation process can be beneficial for applications such as plastic part repairing, addition of new design features, and building around inserts.

Details

Rapid Prototyping Journal, vol. 17 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 3 December 2018

Rafal Stanik, Albert Langkamp, Michael Müller, Maik Gude and Anna Boczkowska

Novel snap-cure polymers (SCPs), as matrix systems for high-performance fibre composite materials, provide high potential for manufacturing of component families with small batch…

Abstract

Purpose

Novel snap-cure polymers (SCPs), as matrix systems for high-performance fibre composite materials, provide high potential for manufacturing of component families with small batch sizes and high variability. Especially, the processing of powdered SCP is associated with relatively simple and inexpensive tools. In addition, because of their curing behaviour, they allow short tooling times so that the production of small batch size components is possible in relatively short cycle times. To enable an efficient manufacturing process, an understanding of the curing process is necessary. An adjustment of the process parameters for a uniform design of the temperature field in the material during the manufacturing process is essential. The paper aims to discuss this issue.

Design/methodology/approach

For this, a powder SCP resin system was investigated under process-specific conditions. An experimental test approach for determination of various thermal and kinetic material properties was developed. For the adjustment of the process parameters and monitoring of the curing state during the manufacturing process, a kinetic material model was determined. In the end, the validation of the determined model was performed. For this, the temperature distribution under process- specific conditions was measured in order to monitor the curing state of the material.

Findings

The experimental investigation showed an uneven temperature field in the material, which leads to an inhomogeneous curing process. This can lead to residual stresses in the structure, which have a critical impact on the material properties.

Originality/value

The determined kinetic model allows a prediction of the curing reaction and adjustment of the process parameters which is essential, especially for thick-walled components with SCPs.

Details

International Journal of Structural Integrity, vol. 9 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 19 June 2009

Fan Zeng, Beshah Ayalew and Mohammed Omar

The purpose of this paper is to present a new closed‐loop radiative robotic paint curing process that could replace less efficient and bulky convection‐based paint curing processes

Abstract

Purpose

The purpose of this paper is to present a new closed‐loop radiative robotic paint curing process that could replace less efficient and bulky convection‐based paint curing processes in automotive manufacturing.

Design/methodology/approach

The proposed robotic paint curing processes uses an Ultraviolet LED panel for a heat source, an infra‐red camera for non‐contact thermal signature feedback of cure level, and a robot control strategy that incorporates the cure‐level information in an inverse dynamics control of the robotic manipulator. To demonstrate the advantage of the closed‐loop process in improving cure uniformity, detailed models and discussions of the irradiation process, the robotics and the control strategy are presented.

Findings

A simulation‐based comparison of the closed‐loop robotic curing with the open‐loop robotic curing clearly shows the benefits of using thermal signature feedback in improving cure level uniformity.

Originality/value

This is a new approach proposed to exploit immerging technology and improve the efficiency of energy use in an automotive manufacturing process without sacrificing product quality.

Details

Industrial Robot: An International Journal, vol. 36 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 March 2012

Amit Joe Lopes, Eric MacDonald and Ryan B. Wicker

The purpose of this paper is to present a hybrid manufacturing system that integrates stereolithography (SL) and direct print (DP) technologies to fabricate three‐dimensional (3D…

8539

Abstract

Purpose

The purpose of this paper is to present a hybrid manufacturing system that integrates stereolithography (SL) and direct print (DP) technologies to fabricate three‐dimensional (3D) structures with embedded electronic circuits. A detailed process was developed that enables fabrication of monolithic 3D packages with electronics without removal from the hybrid SL/DP machine during the process. Successful devices are demonstrated consisting of simple 555 timer circuits designed and fabricated in 2D (single layer of routing) and 3D (multiple layers of routing and component placement).

Design/methodology/approach

A hybrid SL/DP system was designed and developed using a 3D Systems SL 250/50 machine and an nScrypt micro‐dispensing pump integrated within the SL machine through orthogonally‐aligned linear translation stages. A corresponding manufacturing process was also developed using this system to fabricate 2D and 3D monolithic structures with embedded electronic circuits. The process involved part design, process planning, integrated manufacturing (including multiple starts and stops of both SL and DP and multiple intermediate processes), and post‐processing. SL provided substrate/mechanical structure manufacturing while interconnections were achieved using DP of conductive inks. Simple functional demonstrations involving 2D and 3D circuit designs were accomplished.

Findings

The 3D micro‐dispensing DP system provided control over conductive trace deposition and combined with the manufacturing flexibility of the SL machine enabled the fabrication of monolithic 3D electronic structures. To fabricate a 3D electronic device within the hybrid SL/DP machine, a process was developed that required multiple starts and stops of the SL process, removal of uncured resin from the SL substrate, insertion of active and passive electronic components, and DP and laser curing of the conductive traces. Using this process, the hybrid SL/DP technology was capable of successfully fabricating, without removal from the machine during fabrication, functional 2D and 3D 555 timer circuits packaged within SL substrates.

Research limitations/implications

Results indicated that fabrication of 3D embedded electronic systems is possible using the hybrid SL/DP machine. A complete manufacturing process was developed to fabricate complex, monolithic 3D structures with electronics in a single set‐up, advancing the capabilities of additive manufacturing (AM) technologies. Although the process does not require removal of the structure from the machine during fabrication, many of the current sub‐processes are manual. As a result, further research and development on automation and optimization of many of the sub‐processes are required to enhance the overall manufacturing process.

Practical implications

A new methodology is presented for manufacturing non‐traditional electronic systems in arbitrary form, while achieving miniaturization and enabling rugged structure. Advanced applications are demonstrated using a semi‐automated approach to SL/DP integration. Opportunities exist to fully automate the hybrid SL/DP machine and optimize the manufacturing process for enhancing the commercial appeal for fabricating complex systems.

Originality/value

This work broadly demonstrates what can be achieved by integrating multiple AM technologies together for fabricating unique devices and more specifically demonstrates a hybrid SL/DP machine that can produce 3D monolithic structures with embedded electronics and printed interconnects.

Article
Publication date: 16 January 2017

Hengky Eng, Saeed Maleksaeedi, Suzhu Yu, Yu Ying Clarrisa Choong, Florencia Edith Wiria, Ruihua Eugene Kheng, Jun Wei, Pei-Chen Su and Huijun Phoebe Tham

Polymeric parts produced by 3D stereolithography (SL) process have poorer mechanical properties as compared to their counterparts fabricated via conventional methods, such as…

Abstract

Purpose

Polymeric parts produced by 3D stereolithography (SL) process have poorer mechanical properties as compared to their counterparts fabricated via conventional methods, such as injection or compression molding. Adding nanofillers in the photopolymer resin for SL could help improve mechanical properties. This study aims to achieve enhancement in mechanical properties of parts fabricated by SL, for functional applications, by using well-dispersed nanofillers in the photopolymers, together with suitable post-processing.

Design/methodology/approach

Carbon nanotubes (CNTs) have high strength and Young’s modulus, making them attractive nanofillers. However, dispersion of CNTs in photopolymer is a critical challenge, as they tend to agglomerate easily. Achieving good dispersion is crucial to improve the mechanical properties; thus, suitable dispersion mechanisms and processes are examined. Solvent exchange process was found to improve the dispersion of multiwalled carbon nanotubes in the photopolymer. The UV-absorbing nature of CNTs was also discovered to affect the curing properties. With suitable post processing, coupled with thermal curing, the mechanical properties of SL parts made from CNTs-filled resin improved significantly.

Findings

With the addition of 0.25 wt.% CNTs into the photopolymer, tensile stress and elongation of the 3D printed parts increased by 70 and 46 per cent, respectively. With the significant improvement, the achieved tensile strength is comparable to parts manufactured by conventional methods.

Practical implications

This allows functional parts to be manufactured using SL.

Originality/value

In this paper, an improved procedure to incorporate CNTs into the photopolymer was developed. Furthermore, because of strong UV-absorption nature of CNTs, curing properties of photopolymer and SL parts with and without CNT fillers were studied. Optimized curing parameters were determined and additional post-processing step for thermal curing was discovered as an essential step in order to further enhance the mechanical properties of SL composite parts.

Details

Rapid Prototyping Journal, vol. 23 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 January 2024

Natthawut Daoset, Samroeng Inglam, Sujin Wanchat and Nattapon Chantarapanich

This paper aims to investigate the influence of post-curing temperature, post-curing time and gamma ray irradiation dose upon the tensile and compressive mechanical properties of…

Abstract

Purpose

This paper aims to investigate the influence of post-curing temperature, post-curing time and gamma ray irradiation dose upon the tensile and compressive mechanical properties of the medical graded vat photopolymerization parts.

Design/methodology/approach

Medical graded vat photopolymerization specimens, made from photopolymer resin, were fabricated using bottom-up vat photopolymerization machine. Tensile and compressive tests were conducted to assess the mechanical properties. The specimens were categorized into uncured and post-curing groups. Temperature post-processing and/or gamma irradiation exposure were for post-curing specimens. The post-curing parameters considered included temperature levels of 50°C, 60°C and 70°C, with 1, 2, 3 and 4 h periods. For the gamma irradiation, the exposure doses were 25, 50, 75 and 100 kGy.

Findings

Post-curing improved the mechanical properties of medical graded vat photopolymerization parts for both tensile and compressive specimens. Post-curing temperature greater than 50°C or a prolonged post-curing period of more than 1 h made insignificant changes or deterioration in mechanical properties. The optimal post-curing condition was therefore a 50°C post-curing temperature with 1 h post-curing time. Exposure to gamma ray improved the compressive mechanical properties, but deteriorated tensile mechanical properties. Higher gamma irradiation doses could decrease the mechanical properties and also make the part more brittle, especially for doses more than 25 kGy.

Originality/value

The obtained results would be beneficial to the medical device manufacturer who fabricated the invasive temporary contact personalized surgical instruments by vat photopolymerization technique. In addition, it also raised awareness in excessive gamma sterilization in the medical graded vat photopolymerization parts.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 May 2019

Bo Wang, Yanhua Zhang, Haiyan Tan and Jiyou Gu

The purpose of the study was to prepare melamine-urea-formaldehyde (MUF) resin that would be resistant to boiling water and high temperature and exhibit low formaldehyde emission.

Abstract

Purpose

The purpose of the study was to prepare melamine-urea-formaldehyde (MUF) resin that would be resistant to boiling water and high temperature and exhibit low formaldehyde emission.

Design/methodology/approach

The authors prepared MUF resin with different F/(M + U) and changed the amount of melamine added, through the analysis of MUF resin properties to get the best reaction parameters, and used different amino acid cure systems including NH4Cl cured the resin.

Findings

Resin’s heat resistance and water resistance are mainly determined by the amount of melamine added, and formaldehyde emission of the plywood can be changed by adjusting F/(M + U). The peak temperature of the curing agent-cured resin increases as compared with the self-curing resin. Stronger the acidity of curing agent, faster the viscosity increased in probation period and lower the bonding strength and heat resistance of the resin.

Research limitations/implications

Melamine improves the heat resistance and water resistance of the resin. When the amount of melamine is more than a certain value, water resistance of the resin decreased.

Practical implications

MUF resin that is resistant to boiling water and exhibits low formaldehyde emission can be used in high temperature, high humidity and strict formaldehyde emission environment and can also be combined with other materials.

Social implications

It was helpful to reduce the effect of formaldehyde emission on people’s health and environmental pollution and is also beneficial for the expansion of the application range of aldehyde resin.

Originality/value

The originality is twofold: the influence of the acid strength of curing agent on the bonding strength of the resin adhesive and the method for preparing high performance MUF resin by following the traditional process.

Details

Pigment & Resin Technology, vol. 48 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 March 1999

J.Y.H. Fuh, L. Lu, C.C. Tan, Z.X. Shen and S. Chew

Rapid prototypes formed using stereolithography (SL) method have to undergo post‐curing to increase their strength and rigidity. This study attempts to reduce, if not eliminate…

1927

Abstract

Rapid prototypes formed using stereolithography (SL) method have to undergo post‐curing to increase their strength and rigidity. This study attempts to reduce, if not eliminate, post‐cure distortion by characterising curing behaviours. Curing (both heat and UV initiated) characteristics of an acrylic‐based photopolymer under actual fabrication conditions were studied using Raman spectroscopy as well as differential scanning calorimetry (DSC) and differential scanning photo‐calorimetry (DSP). Specimens of single photopolymer lines were created using a SL machine. Raman spectroscopy was used to quantify the curing percentage at different areas on the cross‐section of these lines. Curing percentages before and after post‐curing were also obtained from the experiments. Difference in percentage of post‐curing gave an indication of the distortions faced. It was found that uncured and partially cured resins trapped within the photopolymer resulted in inhomogeneity of curing in the specimens causing shrinkage and distortion.

Details

Rapid Prototyping Journal, vol. 5 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 August 2021

Tristan Schlotthauer, Jan Nitsche and Peter Middendorf

During post-processing of stereolithography photopolymers, the limited penetration depth of ultraviolet (UV) light can lead to inhomogeneous cross-linking. This is a major problem…

Abstract

Purpose

During post-processing of stereolithography photopolymers, the limited penetration depth of ultraviolet (UV) light can lead to inhomogeneous cross-linking. This is a major problem in part design for industrial applications as this creates uncertainty regarding the mechanical load capacity. Therefore, this paper aims to present an experimental method to measure the post-curing depth in stereolithography photopolymers.

Design/methodology/approach

Printed specimens made from urethane acrylate photopolymers are placed in a protective housing and are exposed on one side to UV light during post-processing. A depth profile of the hardness according to ASTM D2240 Shore D is determined alongside the specimens. UVA,-B and -C spectra are investigated and the dependence on exposure dose and pigmentation is studied. The results are directly linked to the mechanical properties via tensile tests and validated on an automotive trim part.

Findings

Exposure with a 405 nm light-emitting diode provides the deepest homogenous post-curing depth of 10.5 mm, which depends on the overall exposure dose and pigmentation. If the initially transparent photopolymer is colored with black pigments, post-curing depth is significantly reduced and no homogenous post-curing can be achieved. To obtain comparable mechanical properties by tensile tests, complete cross-linking of the specimen cross-section has to be ensured.

Research limitations/implications

The spatial resolution of the presented measurement method depends on the indenter size and sample hardness. As a result, the resolution of the used setup is limited in the area close to the edges of the specimen.

Originality/value

This paper shows that the spatially resolved hardness measurement provides more information on the post-curing influence than the evaluation of global mechanical properties. The presented method can be used to ensure homogenous cross-linking of stereolithography parts.

1 – 10 of over 14000