Search results

1 – 10 of 310
Article
Publication date: 12 April 2024

Shivendra Singh Rathore and Chakradhara Rao Meesala

The purpose of this paper is to investigate the effect of the replacement of natural coarse aggregate (NCA) with different percentages of recycled coarse aggregate (RCA) on…

Abstract

Purpose

The purpose of this paper is to investigate the effect of the replacement of natural coarse aggregate (NCA) with different percentages of recycled coarse aggregate (RCA) on properties of low calcium fly ash (FA)-based geopolymer concrete (GPC) cured at oven temperature. Further, this paper aims to study the effect of partial replacement of FA by ground granulated blast slag (GGBS) in GPC made with both NCA and RCA cured under ambient temperature curing.

Design/methodology/approach

M25 grade of ordinary Portland cement (OPC) concrete was designed according to IS: 10262-2019 with 100% NCA as control concrete. Since no standard guidelines are available in the literature for GPC, the same mix proportion was adopted for the GPC by replacing the OPC with 100% FA and W/C ratio by alkalinity/binder ratio. All FA-based GPC mixes were prepared with 12 M of sodium hydroxide (NaOH) and an alkalinity ratio, i.e. sodium hydroxide to sodium silicate (NaOH:Na2SiO3) of 1:1.5, subjected to 90°C temperature for 48 h of curing. The NCA were replaced with 50% and 100% RCA in both OPC and GPC mixes. Further, FA was partially replaced with 15% GGBS in GPC made with the above percentages of NCA and RCA, and they were given ambient temperature curing with the same molarity of NaOH and alkalinity ratio.

Findings

The workability, compressive strength, split tensile strength, flexural strength, water absorption, density, volume of voids and rebound hammer value of all the mixes were studied. Further, the relationship between compressive strength and other mechanical properties of GPC mixes were established and compared with the well-established relationships available for conventional concrete. From the experimental results, it is found that the compressive strength of GPC under ambient curing condition at 28 days with 100% NCA, 50% RCA and 100% RCA were, respectively, 14.8%, 12.85% and 17.76% higher than those of OPC concrete. Further, it is found that 85% FA and 15% GGBS-based GPC with RCA under ambient curing shown superior performance than OPC concrete and FA-based GPC cured under oven curing.

Research limitations/implications

The scope of the present paper is limited to replace the FA by 15% GGBS. Further, only 50% and 100% RCA are used in place of natural aggregate. However, in future study, the replacement of FA by different amounts of GGBS (20%, 25%, 30% and 35%) may be tried to decide the optimum utilisation of GGBS so that the applications of GPC can be widely used in cast in situ applications, i.e. under ambient curing condition. Further, in the present study, the natural aggregate is replaced with only 50% and 100% RCA in GPC. However, further investigations may be carried out by considering different percentages between 50 and 100 with the optimum compositions of FA and GGBS to enhance the use of RCA in GPC applications. The present study is further limited to only the mechanical properties and a few other properties of GPC. For wider use of GPC under ambient curing conditions, the structural performance of GPC needs to be understood. Therefore, the structural performance of GPC subjected to different loadings under ambient curing with RCA to be investigated in future study.

Originality/value

The replacement percentage of natural aggregate by RCA may be further enhanced to 50% in GPC under ambient curing condition without compromising on the mechanical properties of concrete. This may be a good alternative for OPC and natural aggregate to reduce pollution and leads sustainability in the construction.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 31 August 2023

Uche Emmanuel Edike, Olumide Afolarin Adenuga, Daniel Uwumarogie Idusuyi and Abdulkabir Adedamola Oke

The purpose of this study is to advance the application of pulverised cow bone ash (PCBA) as a partial replacement of cement in soil stabilisation for the production of bricks…

Abstract

Purpose

The purpose of this study is to advance the application of pulverised cow bone ash (PCBA) as a partial replacement of cement in soil stabilisation for the production of bricks. The study investigated the impact of PCBA substitution on the characteristic strength of clay bricks under variant curing media.

Design/methodology/approach

Dried cow bones were pulverised, and an energy-dispersive X-ray fluorescence test was conducted on PCBA samples to determine the chemical constituents and ascertain the pozzolanic characteristics. Ordinary Portland cement (OPC) and PCBA were blended at 100%, 75%, 50%, 25% and 0% of cement substitution by mass to stabilise lateritic clay at 10% total binder content for the production of bricks. The binder-to-lateritic clay matrixes were used to produce clay bricks and cylinders for compressive and splitting tensile strength tests, respectively.

Findings

The study found that PCBA and OPC have similar chemical compositions. The strength of the clay bricks increased with curing age, and the thermal curing of clay bricks positively impacted the strength development. The study established that PCBA is a suitable substitute for cement, up to 25% for stabilisation in clay brick production.

Practical implications

Construction stakeholders can successfully use a PCBA-OPC binder blend of 1:3 to stabilise clay at 10% total binder content for the production of bricks. The stabilised clay bricks should be cured at an elevated temperature of approximately 90°C for 48 h to achieve satisfactory performance.

Originality/value

The PCBA-OPC binder blend provides adequate soil stabilisation for the production of clay bricks and curing the clay bricks at elevated temperature. This aspect of the biomass/OPC binder blend has not been explored for brick production, and this is important for the reduction of the environmental impacts of cement production and waste from abattoirs.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 29 November 2022

Xinyan Lv, Yisheng Liang, Jiang Zhong and Haifeng He

The silicone modifications of two-component epoxy resin coatings are commonly built on epoxy resins rather than on epoxy curing agents. The silicone-modified epoxy curing agent…

Abstract

Purpose

The silicone modifications of two-component epoxy resin coatings are commonly built on epoxy resins rather than on epoxy curing agents. The silicone-modified epoxy curing agent system is rarely reported yet. This study aims to prepare the polysiloxane (PS)-modified waterborne epoxy coatings based on aqueous curing agents technology.

Design/methodology/approach

Waterborne epoxy curing agents with different contents of terminal epoxy PS were synthesized by reacting with triethylenetetramine, followed by incorporating of epoxy resin (NPEL-128) and polyethylene glycol diglycidyl ether. The waterborne epoxy coatings were prepared with the above curing agents, and their performance was investigated through thermogravimetric analysis, scanning electron microscopy, mechanical characterization, gloss measurement, chemical resistance test and ultraviolet (UV) aging experiment.

Findings

The results showed that the epoxy coating prepared by silicon-modified curing agent has higher gloss, better chemical resistance and UV resistance than the coating from unmodified curing agent with terminal epoxy PS and commercially available waterborne epoxy curing agent (Aradur 3986), as well as the competitive mechanical properties and heat resistance. Reduced water absorption on fibrous paper was also obtained with the help of silicon-modified curing agent.

Originality/value

These findings will be valuable for resin researchers in addressing the modification issues about waterborne epoxy resin and curing agent.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 24 April 2024

Shahriar Abubakri, Pritpal S. Mangat, Konstantinos Grigoriadis and Vincenzo Starinieri

Microwave curing (MC) can facilitate rapid concrete repair in cold climates without using conventional accelerated curing technologies which are environmentally unsustainable…

Abstract

Purpose

Microwave curing (MC) can facilitate rapid concrete repair in cold climates without using conventional accelerated curing technologies which are environmentally unsustainable. Accelerated curing of concrete under MC can contribute to the decarbonisation of the environment and provide economies in construction in several ways such as reducing construction time, energy efficiency, lower cement content, lower carbonation risk and reducing emissions from equipment.

Design/methodology/approach

The paper investigates moisture loss and pore properties of six cement-based proprietary concrete repair materials subjected to MC. The impact of MC on these properties is critically important for its successful implementation in practice and current literature lacks this information. Specimens were microwave cured for 40–45 min to surface temperatures between 39.9 and 44.1 °C. The fast-setting repair material was microwave cured for 15 min to 40.7 °C. MC causes a higher water loss which shows the importance of preventing drying during MC and the following 24 h.

Findings

Portland cement-based normal density repair mortars, including materials incorporating pfa and polymer latex, benefit from the thermal effect of MC on hydration, resulting in up to 24% reduction in porosity relative to normal curing. Low density and flowing repair materials suffer an increase in porosity up to 16% due to MC. The moisture loss at the end of MC and after 24h is related to the mix water content and porosity, respectively.

Originality/value

The research on the application of MC for rapid repair of concrete is original. The research was funded by the European commission following a very rigorous and competitive review process which ensured its originality. Original data on the parameters of porosity and moisture loss under MC are provided for different generic cementitious repair materials which have not been studied before. Application of MC to concrete construction especially in cold climates will provide environmental, economic and energy benefits.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 27 November 2023

Tanuja Gupta and M. Chakradhara Rao

This study aims to practically determine the optimum proportion of aggregates to attain the desired strength of geopolymer concrete (GPC) and then compare the results using…

Abstract

Purpose

This study aims to practically determine the optimum proportion of aggregates to attain the desired strength of geopolymer concrete (GPC) and then compare the results using established analytical particle packing methods. The investigation further aims to assess the influence of various amounts of recycled aggregate (RA) on properties of low-calcium fly ash-based GPC of grade M25.

Design/methodology/approach

Fine and coarse aggregates were blended in various proportions and the proportion yielding maximum packing density was selected as the optimum proportion and they were compared with analytical models, such as Modified Toufar Model (MTM) and J. D. Dewar Model. RAs for this study were produced in laboratory and they were used in various amounts, namely, 0%, 50% and 100%. 12M NaOH solution was mixed with Na2SiO3 in the ratio of 1:2. The curing of concrete was done at the temperatures of 60° and 90 °C for 24, 48 and 72h.

Findings

The experimentally obtained optimum proportion of coarse to fine aggregate was 60:40 for all amounts of RA. Meanwhile, MTM and Dewar Model resulted in coarse aggregate to fine aggregates as 40:60, 45:55, 55:45 and 55:45, 35:65, 60:40, respectively, for 0% 100% and 50% RAs. The compressive strength of GPC elevated with the increase in curing regime. In addition, the ultrasonic pulse velocity also displayed a similar trend as that of strength.

Originality/value

The GPC with 50% RAs may be considered for use, as it exhibited superior properties compared to GPC with 100% RAs and was comparable to GPC with natural aggregates. Furthermore, compressive strength is correlated with split tensile strength and ultrasonic pulse velocity.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 14 December 2023

Prathamesh Gaikwad and Sandeep Sathe

The purpose of this paper is to study and analyze the effects of fly ash (FA) as a mineral admixture on compressive strength (CS), carbonation resistance and corrosion resistance…

Abstract

Purpose

The purpose of this paper is to study and analyze the effects of fly ash (FA) as a mineral admixture on compressive strength (CS), carbonation resistance and corrosion resistance of reinforced concrete (RC). In addition, the utilization of inexpensive and abundantly available FA as a cement replacement in concrete has several benefits including reduced OPC usage and elimination of the FA disposal problem.

Design/methodology/approach

Reinforcement corrosion and carbonation significantly affect the strength and durability of the RC structures. Also, the utilization of FA as green corrosion inhibitors, which are nontoxic and environmentally friendly alternatives. This review discusses the effects of FA on the mechanical characteristics of concrete. Also, this review analyzes the impact of FA as a partial replacement of cement in concrete and its effect on the depth of carbonation in concrete elements and the corrosion rate of embedded steel as well as the chemical composition and microstructure (X-ray diffraction analysis and scanning electron microscopy) of FA concrete were also reviewed.

Findings

This review provides a clear analysis of the available study, providing a thorough overview of the current state of knowledge on this topic. Regarding concrete CS, the findings indicate that the incorporation of FA often leads to a loss in early-age strength. However, as the curing period increased, the strength of fly ash concrete (FAC) increased with or even surpassed that of conventional concrete. Analysis of the accelerated carbonation test revealed that incorporating FA into the concrete mix led to a shallower carbonation depth and slower diffusion of carbon dioxide (CO2) into the concrete. Furthermore, the half-cell potential test shows that the inclusion of FA increases the durability of RC by slowing the rate of steel-reinforcement corrosion.

Originality/value

This systematic review analyzes a wide range of existing studies on the topic, providing a comprehensive overview of the research conducted so far. This review intends to critically assess the enhancements in mechanical and durability attributes (such as CS, carbonation and corrosion resistance) of FAC and FA-RC. This systematic review has practical implications for the construction and engineering industries. This can support engineers and designers in making informed decisions regarding the use of FA in concrete mixtures, considering both its benefits and potential drawbacks.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 22 August 2023

Jamal Khatib, Lelian ElKhatib, Joseph Assaad and Adel El Kordi

The purpose of this paper is to examine the use of phragmites australis ash (PAA) in cementitious systems to achieve sustainable construction.

Abstract

Purpose

The purpose of this paper is to examine the use of phragmites australis ash (PAA) in cementitious systems to achieve sustainable construction.

Design/methodology/approach

In this paper, the properties of mortar containing PAA as partial cement replacement are determined. The PAA is produced through slow burning in a closed system to minimize the CO2 emission. A total of four mortar mixes are prepared with PAA replacement levels ranging from 0% to 30% by weight. The water to binder and the proportions of binder to sand are 0.55 and 1:3 by weight, respectively. The properties tested are density, compressive strength, flexural strength, ultrasonic pulse velocity, water absorption by total immersion and capillary rise. Testing is conducted at 1, 7, 28 and 90 days.

Findings

While there is a decrease in strength as the amount of PAA increases, there is strong indication of pozzolanic reaction in the presence of PAA. This is in agreement with the results reported by Salvo et al. (2015), where they found noticeable pozzolanic activities in the presence of straw ash, which is rich in SiO2 and relatively high K2O content. At 90 days of curing, there is a decrease of 5% in compressive strength at 10% PAA replacement. However, at 20% and 30% replacement, the reduction in compressive strength is 23% and 32%, respectively. The trend in flexural strength and ultrasonic pulse velocity is similar to that in compressive strength. The water absorption by total immersion and capillary rise tends to increase with increasing amounts of PAA in the mix. There seems to be a linear relationship between water absorption and compressive strength at each curing age.

Research limitations/implications

The Phragmites australis plant used in this investigation is obtained from one location and this present a limitation as the type of soil may change the properties. Also one method of slow burning is used. Different burning methods may alter the composition of the PAA.

Practical implications

This outcome of this research will contribute towards sustainable development as it will make use of the waste generated, reduce the amount of energy-intensive cement used in construction and help generate local employment in the area where the Phragmites australis plant grows.

Originality/value

To the best knowledge of the authors, the ash from the Phragmites australis plant has not been used in cementitious system and this research can be considered original as it examines the properties of mortar containing PAA. Also, the process of burning in a closed system using this material.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 27 March 2023

Yiran Dan and Guiwen Liu

Production and transportation of precast components, as two continuous service stages of a precast plant, play an important role in meeting customer needs and controlling costs…

Abstract

Purpose

Production and transportation of precast components, as two continuous service stages of a precast plant, play an important role in meeting customer needs and controlling costs. However, there is still a lack of production and transportation scheduling methods that comprehensively consider delivery timeliness and transportation economy. This article aims to study the integrated scheduling optimization problem of in-plant flowshop production and off-plant transportation under the consideration of practical constraints of customer order delivery time window, and seek an optimal scheduling method that balances delivery timeliness and transportation economy.

Design/methodology/approach

In this study, an integrated scheduling optimization model of flowshop production and transportation for precast components with delivery time windows is established, which describes the relationship between production and transportation and handles transportation constraints under the premise of balancing delivery timeliness and transportation economy. Then a genetic algorithm is designed to solve this model. It realizes the integrated scheduling of production and transportation through double-layer chromosome coding. A program is designed to realize the solution process. Finally, the validity of the model is proved by the calculation of actual enterprise data.

Findings

The optimized scheduling scheme can not only meet the on-time delivery, but also improve the truck loading rate and reduce the total cost, composed of early cost in plant, delivery penalty cost and transportation cost. In the model validation, the optimal scheduling scheme uses one less truck than the traditional EDD scheme (saving 20% of the transportation cost), and the total cost can be saved by 17.22%.

Originality/value

This study clarifies the relationship between the production and transportation of precast components and establishes the integrated scheduling optimization model and its solution algorithm. Different from previous studies, the proposed optimization model can balance the timeliness and economy of production and transportation for precast components.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 9 May 2023

Fuping Bian and Shudong Lin

This paper aims to investigate the effects on coatings performance in the epoxy silicone resin system owing to the existence of the different chain length of open-chain epoxy…

Abstract

Purpose

This paper aims to investigate the effects on coatings performance in the epoxy silicone resin system owing to the existence of the different chain length of open-chain epoxy monomer. In this paper, [4-Methylphenyl-(4–(2-methylpropyl) phenyl)]iodonium as photoinitiator was added into epoxy silicone resin by ultraviolet (UV)-cured polymerization to investigate the effects on coatings performance owing to the existence of the different chain length of open-chain epoxy monomer.

Design/methodology/approach

A simple hydrosilylation reaction was used to synthesize epoxy-based silicone prepolymers by using hydrogen-terminated polydimethylsiloxane, 1,2-epoxy-5-hexene, 1,2-epoxy-7-octene and 1,2-epoxy-9-decene as precursors.

Findings

The results revealed that the glass transition temperatures (Tg) and hydrophobicity increased with the chain length of open-chain epoxy monomer in the UV curable epoxy-based silicone coatings, and these films had excellent heat resistance, hydrophobicity, antigraffiti and ink removal properties.

Research limitations/implications

The cationic photocuring systems are not susceptible to the effect of oxygen inhibition. However, the limitation of cationic light curing process is that it requires a long curing time.

Originality/value

The coatings prepared via the UV curing approach can provide superior antismudge effects, and thus they are promising candidates for use in various industries, especially in fields such as antismudge coatings and antigraffiti coatings.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 9 January 2024

Linghuan Li, Shibin Sun, Ronghua Zhuang, Bing Zhang, Zeyu Li and Jianying Yu

This study aims to develop a polymer cement-based waterproof coating with self-healing capability to efficiently and intelligently solve the building leakage caused by cracking of…

Abstract

Purpose

This study aims to develop a polymer cement-based waterproof coating with self-healing capability to efficiently and intelligently solve the building leakage caused by cracking of waterproof materials, along with excellent durability to prolong its service life.

Design/methodology/approach

Ion chelators are introduced into the composite system based on ethylene vinyl acetate copolymer emulsion and ordinary Portland cement to prepare self-healing polymer cement-based waterproof coating. Hydration, microstructure, wettability, mechanical properties, durability, self-healing performance and self-healing products of polymer cement-based waterproof coating with ion chelator are investigated systematically. Meanwhile, the chemical composition of self-healing products in the crack was examined.

Findings

The results showed that ion chelators could motivate the hydration of C2S and C3S, as well as the formation of hydration products (C-S-H gel) of the waterproof coating to improve its compactness. Compared with the control group, the waterproof coating with ion chelator had more excellent water resistance, alkali resistance, thermal and UV aging resistance. When the dosage of ion chelator was 2%, after 28 days of curing, cracks with a width of 0.29 mm in waterproof coating could fully heal and cracks with a width of 0.50 mm could achieve a self-healing efficiency of 72%. Furthermore, the results reveal that the self-healing product in the crack was calcite crystalline CaCO3.

Originality/value

A novel ion chelator was introduced into the composite coating system to endow it with excellent self-healing ability to prolong its service life. It has huge application potential in the field of building waterproofing.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 310