Search results

1 – 10 of 16
Open Access
Article
Publication date: 6 May 2021

Zakaria Mohamed Salem Elbarbary and Mohamed Abdullrahman Alranini

Silicon photovoltaics technology has drawbacks of high cost and power conversion efficiency. In order to extract the maximum output power of the module, maximum power point (MPP…

9440

Abstract

Purpose

Silicon photovoltaics technology has drawbacks of high cost and power conversion efficiency. In order to extract the maximum output power of the module, maximum power point (MPP) is used by implying the nonlinear behavior of I-V characteristics. Different techniques are used regarding maximum power point tracking (MPPT). The paper aims to review the techniques of MPPT used in PV systems and review the comparison between Perturb and Observe (P&O) method and incremental conductance (IC) method that are used to track the maximum power and gives a comparative review of all those techniques.

Design/methodology/approach

A study of MPPT techniques for photovoltaic (PV) systems is presented. Matlab Simulink is used to find the MPP using P&O simulation along with IC simulation at a steady temperature and irradiance.

Findings

MATLAB simulations are used to implement the P&O method and IC method, which includes a PV cell connected to an MPPT-controlled boost converter. The simulation results demonstrate the accuracy of the PV model as well as the functional value of the algorithms, which has improved tracking efficiency and dynamic characteristics. P&O solution gave 94% performance when configured. P&O controller has a better time response process. As compared to the P&O method of tracking, the incremental conductance response rate was significantly slower.

Originality/value

In PV systems, MPPT techniques are used to optimize the PV array output power by continuously tracking the MPP under a variety of operating conditions, including cell temperature and irradiation level.

Details

Frontiers in Engineering and Built Environment, vol. 1 no. 1
Type: Research Article
ISSN: 2634-2499

Keywords

Open Access
Article
Publication date: 8 March 2022

Armin Mahmoodi, Milad Jasemi Zergani, Leila Hashemi and Richard Millar

The purpose of this paper is to maximize the total demand covered by the established additive manufacturing and distribution centers and maximize the total literal weight assigned…

1052

Abstract

Purpose

The purpose of this paper is to maximize the total demand covered by the established additive manufacturing and distribution centers and maximize the total literal weight assigned to the drones.

Design/methodology/approach

Disaster management or humanitarian supply chains (HSCs) differ from commercial supply chains in the fact that the aim of HSCs is to minimize the response time to a disaster as compared to the profit maximization goal of commercial supply chains. In this paper, the authors develop a relief chain structure that accommodates emerging technologies in humanitarian logistics into the two phases of disaster management – the preparedness stage and the response stage.

Findings

Solving the model by the genetic and the cuckoo optimization algorithm (COA) and comparing the results with the ones obtained by The General Algebraic Modeling System (GAMS) clear that genetic algorithm overcomes other options as it has led to objective functions that are 1.6% and 24.1% better comparing to GAMS and COA, respectively.

Originality/value

Finally, the presented model has been solved with three methods including one exact method and two metaheuristic methods. Results of implementation show that Non-dominated sorting genetic algorithm II (NSGA-II) has better performance in finding the optimal solutions.

Open Access
Article
Publication date: 7 August 2017

Ali M. Abdulshahed, Andrew P. Longstaff and Simon Fletcher

The purpose of this paper is to produce an intelligent technique for modelling machine tool errors caused by the thermal distortion of Computer Numerical Control (CNC) machine…

1568

Abstract

Purpose

The purpose of this paper is to produce an intelligent technique for modelling machine tool errors caused by the thermal distortion of Computer Numerical Control (CNC) machine tools. A new metaheuristic method, the cuckoo search (CS) algorithm, based on the life of a bird family is proposed to optimize the GMC(1, N) coefficients. It is then used to predict thermal error on a small vertical milling centre based on selected sensors.

Design/methodology/approach

A Grey model with convolution integral GMC(1, N) is used to design a thermal prediction model. To enhance the accuracy of the proposed model, the generation coefficients of GMC(1, N) are optimized using a new metaheuristic method, called the CS algorithm.

Findings

The results demonstrate good agreement between the experimental and predicted thermal error. It can therefore be concluded that it is possible to optimize a Grey model using the CS algorithm, which can be used to predict the thermal error of a CNC machine tool.

Originality/value

An attempt has been made for the first time to apply CS algorithm for calibrating the GMC(1, N) model. The proposed CS-based Grey model has been validated and compared with particle swarm optimization (PSO) based Grey model. Simulations and comparison show that the CS algorithm outperforms PSO and can act as an alternative optmization algorithm for Grey models that can be used for thermal error compensation.

Details

Grey Systems: Theory and Application, vol. 7 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Open Access
Article
Publication date: 19 November 2021

Łukasz Knypiński

The purpose of this paper is to execute the efficiency analysis of the selected metaheuristic algorithms (MAs) based on the investigation of analytical functions and investigation…

1215

Abstract

Purpose

The purpose of this paper is to execute the efficiency analysis of the selected metaheuristic algorithms (MAs) based on the investigation of analytical functions and investigation optimization processes for permanent magnet motor.

Design/methodology/approach

A comparative performance analysis was conducted for selected MAs. Optimization calculations were performed for as follows: genetic algorithm (GA), particle swarm optimization algorithm (PSO), bat algorithm, cuckoo search algorithm (CS) and only best individual algorithm (OBI). All of the optimization algorithms were developed as computer scripts. Next, all optimization procedures were applied to search the optimal of the line-start permanent magnet synchronous by the use of the multi-objective objective function.

Findings

The research results show, that the best statistical efficiency (mean objective function and standard deviation [SD]) is obtained for PSO and CS algorithms. While the best results for several runs are obtained for PSO and GA. The type of the optimization algorithm should be selected taking into account the duration of the single optimization process. In the case of time-consuming processes, algorithms with low SD should be used.

Originality/value

The new proposed simple nondeterministic algorithm can be also applied for simple optimization calculations. On the basis of the presented simulation results, it is possible to determine the quality of the compared MAs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 7 July 2021

Habib Shah

Breast cancer is an important medical disorder, which is not a single disease but a cluster more than 200 different serious medical complications.

Abstract

Purpose

Breast cancer is an important medical disorder, which is not a single disease but a cluster more than 200 different serious medical complications.

Design/methodology/approach

The new artificial bee colony (ABC) implementation has been applied to probabilistic neural network (PNN) for training and testing purpose to classify the breast cancer data set.

Findings

The new ABC algorithm along with PNN has been successfully applied to breast cancers data set for prediction purpose with minimum iteration consuming.

Originality/value

The new implementation of ABC along PNN can be easily applied to times series problems for accurate prediction or classification.

Details

Frontiers in Engineering and Built Environment, vol. 1 no. 2
Type: Research Article
ISSN: 2634-2499

Keywords

Open Access
Article
Publication date: 29 December 2017

Prasenjit Dey, Aniruddha Bhattacharya and Priyanath Das

This paper reports a new technique for achieving optimized design for power system stabilizers. In any large scale interconnected systems, disturbances of small magnitudes are…

1723

Abstract

This paper reports a new technique for achieving optimized design for power system stabilizers. In any large scale interconnected systems, disturbances of small magnitudes are very common and low frequency oscillations pose a major problem. Hence small signal stability analysis is very important for analyzing system stability and performance. Power System Stabilizers (PSS) are used in these large interconnected systems for damping out low-frequency oscillations by providing auxiliary control signals to the generator excitation input. In this paper, collective decision optimization (CDO) algorithm, a meta-heuristic approach based on the decision making approach of human beings, has been applied for the optimal design of PSS. PSS parameters are tuned for the objective function, involving eigenvalues and damping ratios of the lightly damped electromechanical modes over a wide range of operating conditions. Also, optimal locations for PSS placement have been derived. Comparative study of the results obtained using CDO with those of grey wolf optimizer (GWO), differential Evolution (DE), Whale Optimization Algorithm (WOA) and crow search algorithm (CSA) methods, established the robustness of the algorithm in designing PSS under different operating conditions.

Details

Applied Computing and Informatics, vol. 16 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 29 July 2020

Ghoulemallah Boukhalfa, Sebti Belkacem, Abdesselem Chikhi and Said Benaggoune

This paper presents the particle swarm optimization (PSO) algorithm in conjuction with the fuzzy logic method in order to achieve an optimized tuning of a proportional integral…

1227

Abstract

This paper presents the particle swarm optimization (PSO) algorithm in conjuction with the fuzzy logic method in order to achieve an optimized tuning of a proportional integral derivative controller (PID) in the DTC control loops of dual star induction motor (DSIM). The fuzzy controller is insensitive to parametric variations, however, with the PSO-based optimization approach we obtain a judicious choice of the gains to make the system more robust. According to Matlab simulation, the results demonstrate that the hybrid DTC of DSIM improves the speed loop response, ensures the system stability, reduces the steady state error and enhances the rising time. Moreover, with this controller, the disturbances do not affect the motor performances.

Details

Applied Computing and Informatics, vol. 18 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 15 December 2020

Soha Rawas and Ali El-Zaart

Image segmentation is one of the most essential tasks in image processing applications. It is a valuable tool in many oriented applications such as health-care systems, pattern…

Abstract

Purpose

Image segmentation is one of the most essential tasks in image processing applications. It is a valuable tool in many oriented applications such as health-care systems, pattern recognition, traffic control, surveillance systems, etc. However, an accurate segmentation is a critical task since finding a correct model that fits a different type of image processing application is a persistent problem. This paper develops a novel segmentation model that aims to be a unified model using any kind of image processing application. The proposed precise and parallel segmentation model (PPSM) combines the three benchmark distribution thresholding techniques to estimate an optimum threshold value that leads to optimum extraction of the segmented region: Gaussian, lognormal and gamma distributions. Moreover, a parallel boosting algorithm is proposed to improve the performance of the developed segmentation algorithm and minimize its computational cost. To evaluate the effectiveness of the proposed PPSM, different benchmark data sets for image segmentation are used such as Planet Hunters 2 (PH2), the International Skin Imaging Collaboration (ISIC), Microsoft Research in Cambridge (MSRC), the Berkley Segmentation Benchmark Data set (BSDS) and Common Objects in COntext (COCO). The obtained results indicate the efficacy of the proposed model in achieving high accuracy with significant processing time reduction compared to other segmentation models and using different types and fields of benchmarking data sets.

Design/methodology/approach

The proposed PPSM combines the three benchmark distribution thresholding techniques to estimate an optimum threshold value that leads to optimum extraction of the segmented region: Gaussian, lognormal and gamma distributions.

Findings

On the basis of the achieved results, it can be observed that the proposed PPSM–minimum cross-entropy thresholding (PPSM–MCET)-based segmentation model is a robust, accurate and highly consistent method with high-performance ability.

Originality/value

A novel hybrid segmentation model is constructed exploiting a combination of Gaussian, gamma and lognormal distributions using MCET. Moreover, and to provide an accurate and high-performance thresholding with minimum computational cost, the proposed PPSM uses a parallel processing method to minimize the computational effort in MCET computing. The proposed model might be used as a valuable tool in many oriented applications such as health-care systems, pattern recognition, traffic control, surveillance systems, etc.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 12 June 2019

Ximena Alejandra Flechas Chaparro, Leonardo Augusto de Vasconcelos Gomes and Paulo Tromboni de Souza Nascimento

The purpose of this paper is to identify how project portfolio selection (PPS) methods have evolved and which approaches are more suitable for radical innovation projects. This…

9728

Abstract

Purpose

The purpose of this paper is to identify how project portfolio selection (PPS) methods have evolved and which approaches are more suitable for radical innovation projects. This paper addressed the following research question: how have the selection approaches evolved to better fit within radical innovation conditions? The current literature offers a number of selection approaches with different and, in some cases, conflicting nature. Therefore, there is a lack of understanding regarding when and how to use these approaches in order to select a specific type of innovation projects (from incremental to more radical ones).

Design/methodology/approach

Given the nature of the research question, the authors perform a systematic literature review method and analyze 48 portfolio selection approaches. The authors then classified and characterized these articles in order to identify techniques, tools, required data and types of examined projects, among other aspects.

Findings

The authors identify four key features related to the selection of radical innovation projects: dynamism, interdependency management, uncertainty treatment and required input data. Based on the content analysis, the authors identified that approaches based on different sources and nature of data are more appropriated for uncertain conditions, such as behavioral methods, information gap theory, real options and integrated approaches.

Originality/value

The research provides a comprehensive framework about PPS methods and how they have been evolving over time. This portfolio selection framework considers the particular aspects of incremental and radical innovation projects. The authors hope that the framework contributes to reinvigorating the literature on selection approaches for innovation projects.

Details

Revista de Gestão, vol. 26 no. 3
Type: Research Article
ISSN: 2177-8736

Keywords

Open Access
Article
Publication date: 3 August 2020

Mostafa Abd-El-Barr, Kalim Qureshi and Bambang Sarif

Ant Colony Optimization and Particle Swarm Optimization represent two widely used Swarm Intelligence (SI) optimization techniques. Information processing using Multiple-Valued…

Abstract

Ant Colony Optimization and Particle Swarm Optimization represent two widely used Swarm Intelligence (SI) optimization techniques. Information processing using Multiple-Valued Logic (MVL) is carried out using more than two discrete logic levels. In this paper, we compare two the SI-based algorithms in synthesizing MVL functions. A benchmark consisting of 50,000 randomly generated 2-variable 4-valued functions is used for assessing the performance of the algorithms using the benchmark. Simulation results show that the PSO outperforms the ACO technique in terms of the average number of product terms (PTs) needed. We also compare the results obtained using both ACO-MVL and PSO-MVL with those obtained using Espresso-MV logic minimizer. It is shown that on average, both of the SI-based techniques produced better results compared to those produced by Espresso-MV. We show that the SI-based techniques outperform the conventional direct-cover (DC) techniques in terms of the average number of product terms required.

1 – 10 of 16