Search results

1 – 10 of 21
Article
Publication date: 7 September 2022

Huanchao Wu

The digital media recording and broadcasting classroom using Internet real-time intelligent image positioning and opinion monitoring in communication teaching is researched and…

Abstract

Purpose

The digital media recording and broadcasting classroom using Internet real-time intelligent image positioning and opinion monitoring in communication teaching is researched and analyzed.

Design/methodology/approach

First, spatial grid positioning and monitoring and image intelligent recognition technologies were used to extract and analyze teaching images by mastering Internet of Things (IoT) technology and establishing an intelligent image positioning and opinion monitoring digital media recording and broadcasting system framework. Next, a positioning node algorithm was utilized to measure the image distance, and then a moving node location model under the IoT was established. In addition, a radial basis function (RBF) neural network was used to realize the signal transmission function. The experimental data of the adopted RBF based on the optimization of the adaptive cuckoo search (ACS-RBF) neural network, particle swarm algorithm neural network, and method of least squares optimization were compared and analyzed. In addition, a more efficient RBF neural network was adopted. Finally, the digital media recording and broadcasting classroom scheme of real-time intelligent image positioning and opinion monitoring was designed. In addition, the application environment of digital media actual teacher teaching was detected, and recording and broadcasting pictures were analyzed and researched.

Findings

The actual value, predicted value, and the number of predicted samples of the ACS-RBF model were all better than those of the two other neural networks. According to the analysis and comparison of the sampling optimization Monte Carlo localization (SOMCL), Monte Carlo, and genetic algorithm optimization-based Monte Carlo positioning algorithms, the SOMCL algorithm showed better robustness, and its positioning efficiency was superior to that of the two other algorithms. In addition, the SOMCL algorithm greatly reduced the positioning and monitoring energy consumption.

Originality/value

The application of real-time intelligent image positioning and monitoring technology in actual communication teaching was realized in the study.

Details

Library Hi Tech, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-8831

Keywords

Article
Publication date: 16 November 2023

Ehsan Goudarzi, Hamid Esmaeeli, Kia Parsa and Shervin Asadzadeh

The target of this research is to develop a mathematical model which combines the Resource-Constrained Multi-Project Scheduling Problem (RCMPSP) and the Multi-Skilled…

Abstract

Purpose

The target of this research is to develop a mathematical model which combines the Resource-Constrained Multi-Project Scheduling Problem (RCMPSP) and the Multi-Skilled Resource-Constrained Project Scheduling Problem (MSRCPSP). Due to the importance of resource management, the proposed formulation comprises resource leveling considerations as well. The model aims to simultaneously optimize: (1) the total time to accomplish all projects and (2) the total deviation of resource consumptions from the uniform utilization levels.

Design/methodology/approach

The K-Means (KM) and Fuzzy C-Means (FCM) clustering methods have been separately applied to discover the clusters of activities which have the most similar resource demands. The discovered clusters are given to the scheduling process as priori knowledge. Consequently, the execution times of the activities with the most common resource requests will not overlap. The intricacy of the problem led us to incorporate the KM and FCM techniques into a meta-heuristic called the Bi-objective Symbiosis Organisms Search (BSOS) algorithm so that the real-life samples of this problem could be solved. Therefore, two clustering-based algorithms, namely, the BSOS-KM and BSOS-FCM have been developed.

Findings

Comparisons between the BSOS-KM, BSOS-FCM and the BSOS method without any clustering approach show that the clustering techniques could enhance the optimization process. Another hybrid clustering-based methodology called the NSGA-II-SPE has been added to the comparisons to evaluate the developed resource leveling framework.

Practical implications

The practical importance of the model and the clustering-based algorithms have been demonstrated in planning several construction projects, where multiple water supply systems are concurrently constructed.

Originality/value

Reviewing the literature revealed that there was a need for a hybrid formulation that embraces the characteristics of the RCMPSP and MSRCPSP with resource leveling considerations. Moreover, the application of clustering algorithms as resource leveling techniques was not studied sufficiently in the literature.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 24 April 2024

Haiyan Song and Hanyuan Zhang

The aim of this paper is to provide a narrative review of previous research on tourism demand modelling and forecasting and potential future developments.

Abstract

Purpose

The aim of this paper is to provide a narrative review of previous research on tourism demand modelling and forecasting and potential future developments.

Design/methodology/approach

A narrative approach is taken in this review of the current body of knowledge.

Findings

Significant methodological advancements in tourism demand modelling and forecasting over the past two decades are identified.

Originality/value

The distinct characteristics of the various methods applied in the field are summarised and a research agenda for future investigations is proposed.

目的

本文旨在对先前关于旅游需求建模和预测的研究进行叙述性回顾并对未来潜在发展进行展望。

设计/方法

本文采用叙述性回顾方法对当前知识体系进行了评论。

研究结果

本文确认了过去二十年旅游需求建模和预测方法论方面的重要进展。

独创性

本文总结了该领域应用的各种方法的独特特征, 并对未来研究提出了建议。

Objetivo

El objetivo de este documento es ofrecer una revisión narrativa de la investigación previa sobre modelización y previsión de la demanda turística y los posibles desarrollos futuros.

Diseño/metodología/enfoque

En esta revisión del marco actual de conocimientos sobre modelización y previsión de la demanda turística y los posibles desarrollos futuros,se adopta un enfoque narrativo.

Resultados

Se identifican avances metodológicos significativos en la modelización y previsión de la demanda turística en las dos últimas décadas.

Originalidad

Se resumen las características propias de los diversos métodos aplicados en este campo y se propone una agenda de investigación para futuros trabajos.

Article
Publication date: 10 November 2023

Yong Gui and Lanxin Zhang

Influenced by the constantly changing manufacturing environment, no single dispatching rule (SDR) can consistently obtain better scheduling results than other rules for the…

Abstract

Purpose

Influenced by the constantly changing manufacturing environment, no single dispatching rule (SDR) can consistently obtain better scheduling results than other rules for the dynamic job-shop scheduling problem (DJSP). Although the dynamic SDR selection classifier (DSSC) mined by traditional data-mining-based scheduling method has shown some improvement in comparison to an SDR, the enhancement is not significant since the rule selected by DSSC is still an SDR.

Design/methodology/approach

This paper presents a novel data-mining-based scheduling method for the DJSP with machine failure aiming at minimizing the makespan. Firstly, a scheduling priority relation model (SPRM) is constructed to determine the appropriate priority relation between two operations based on the production system state and the difference between their priority values calculated using multiple SDRs. Subsequently, a training sample acquisition mechanism based on the optimal scheduling schemes is proposed to acquire training samples for the SPRM. Furthermore, feature selection and machine learning are conducted using the genetic algorithm and extreme learning machine to mine the SPRM.

Findings

Results from numerical experiments demonstrate that the SPRM, mined by the proposed method, not only achieves better scheduling results in most manufacturing environments but also maintains a higher level of stability in diverse manufacturing environments than an SDR and the DSSC.

Originality/value

This paper constructs a SPRM and mines it based on data mining technologies to obtain better results than an SDR and the DSSC in various manufacturing environments.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 24 April 2024

Haider Jouma, Muhamad Mansor, Muhamad Safwan Abd Rahman, Yong Jia Ying and Hazlie Mokhlis

This study aims to investigate the daily performance of the proposed microgrid (MG) that comprises photovoltaic, wind turbines and is connected to the main grid. The load demand…

Abstract

Purpose

This study aims to investigate the daily performance of the proposed microgrid (MG) that comprises photovoltaic, wind turbines and is connected to the main grid. The load demand is a residential area that includes 20 houses.

Design/methodology/approach

The daily operational strategy of the proposed MG allows to vend and procure utterly between the main grid and MG. The smart metre of every consumer provides the supplier with the daily consumption pattern which is amended by demand side management (DSM). The daily operational cost (DOC) CO2 emission and other measures are utilized to evaluate the system performance. A grey wolf optimizer was employed to minimize DOC including the cost of procuring energy from the main grid, the emission cost and the revenue of sold energy to the main grid.

Findings

The obtained results of winter and summer days revealed that DSM significantly improved the system performance from the economic and environmental perspectives. With DSM, DOC on winter day was −26.93 ($/kWh) and on summer day, DOC was 10.59 ($/kWh). While without considering DSM, DOC on winter day was −25.42 ($/kWh) and on summer day DOC was 14.95 ($/kWh).

Originality/value

As opposed to previous research that predominantly addressed the long-term operation, the value of the proposed research is to investigate the short-term operation (24-hour) of MG that copes with vital contingencies associated with selling and procuring energy with the main grid considering the environmental cost. Outstandingly, the proposed research engaged the consumers by smart meters to apply demand-sideDSM, while the previous studies largely focused on supply side management.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 22 April 2022

Sreedhar Jyothi and Geetanjali Nelloru

Patients having ventricular arrhythmias and atrial fibrillation, that are early markers of stroke and sudden cardiac death, as well as benign subjects are all studied using the…

Abstract

Purpose

Patients having ventricular arrhythmias and atrial fibrillation, that are early markers of stroke and sudden cardiac death, as well as benign subjects are all studied using the electrocardiogram (ECG). In order to identify cardiac anomalies, ECG signals analyse the heart's electrical activity and show output in the form of waveforms. Patients with these disorders must be identified as soon as possible. ECG signals can be difficult, time-consuming and subject to inter-observer variability when inspected manually.

Design/methodology/approach

There are various forms of arrhythmias that are difficult to distinguish in complicated non-linear ECG data. It may be beneficial to use computer-aided decision support systems (CAD). It is possible to classify arrhythmias in a rapid, accurate, repeatable and objective manner using the CAD, which use machine learning algorithms to identify the tiny changes in cardiac rhythms. Cardiac infractions can be classified and detected using this method. The authors want to categorize the arrhythmia with better accurate findings in even less computational time as the primary objective. Using signal and axis characteristics and their association n-grams as features, this paper makes a significant addition to the field. Using a benchmark dataset as input to multi-label multi-fold cross-validation, an experimental investigation was conducted.

Findings

This dataset was used as input for cross-validation on contemporary models and the resulting cross-validation metrics have been weighed against the performance metrics of other contemporary models. There have been few false alarms with the suggested model's high sensitivity and specificity.

Originality/value

The results of cross validation are significant. In terms of specificity, sensitivity, and decision accuracy, the proposed model outperforms other contemporary models.

Details

International Journal of Intelligent Unmanned Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2049-6427

Keywords

Open Access
Article
Publication date: 15 December 2020

Soha Rawas and Ali El-Zaart

Image segmentation is one of the most essential tasks in image processing applications. It is a valuable tool in many oriented applications such as health-care systems, pattern…

Abstract

Purpose

Image segmentation is one of the most essential tasks in image processing applications. It is a valuable tool in many oriented applications such as health-care systems, pattern recognition, traffic control, surveillance systems, etc. However, an accurate segmentation is a critical task since finding a correct model that fits a different type of image processing application is a persistent problem. This paper develops a novel segmentation model that aims to be a unified model using any kind of image processing application. The proposed precise and parallel segmentation model (PPSM) combines the three benchmark distribution thresholding techniques to estimate an optimum threshold value that leads to optimum extraction of the segmented region: Gaussian, lognormal and gamma distributions. Moreover, a parallel boosting algorithm is proposed to improve the performance of the developed segmentation algorithm and minimize its computational cost. To evaluate the effectiveness of the proposed PPSM, different benchmark data sets for image segmentation are used such as Planet Hunters 2 (PH2), the International Skin Imaging Collaboration (ISIC), Microsoft Research in Cambridge (MSRC), the Berkley Segmentation Benchmark Data set (BSDS) and Common Objects in COntext (COCO). The obtained results indicate the efficacy of the proposed model in achieving high accuracy with significant processing time reduction compared to other segmentation models and using different types and fields of benchmarking data sets.

Design/methodology/approach

The proposed PPSM combines the three benchmark distribution thresholding techniques to estimate an optimum threshold value that leads to optimum extraction of the segmented region: Gaussian, lognormal and gamma distributions.

Findings

On the basis of the achieved results, it can be observed that the proposed PPSM–minimum cross-entropy thresholding (PPSM–MCET)-based segmentation model is a robust, accurate and highly consistent method with high-performance ability.

Originality/value

A novel hybrid segmentation model is constructed exploiting a combination of Gaussian, gamma and lognormal distributions using MCET. Moreover, and to provide an accurate and high-performance thresholding with minimum computational cost, the proposed PPSM uses a parallel processing method to minimize the computational effort in MCET computing. The proposed model might be used as a valuable tool in many oriented applications such as health-care systems, pattern recognition, traffic control, surveillance systems, etc.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Article
Publication date: 17 April 2024

Jahanzaib Alvi and Imtiaz Arif

The crux of this paper is to unveil efficient features and practical tools that can predict credit default.

Abstract

Purpose

The crux of this paper is to unveil efficient features and practical tools that can predict credit default.

Design/methodology/approach

Annual data of non-financial listed companies were taken from 2000 to 2020, along with 71 financial ratios. The dataset was bifurcated into three panels with three default assumptions. Logistic regression (LR) and k-nearest neighbor (KNN) binary classification algorithms were used to estimate credit default in this research.

Findings

The study’s findings revealed that features used in Model 3 (Case 3) were the efficient and best features comparatively. Results also showcased that KNN exposed higher accuracy than LR, which proves the supremacy of KNN on LR.

Research limitations/implications

Using only two classifiers limits this research for a comprehensive comparison of results; this research was based on only financial data, which exhibits a sizeable room for including non-financial parameters in default estimation. Both limitations may be a direction for future research in this domain.

Originality/value

This study introduces efficient features and tools for credit default prediction using financial data, demonstrating KNN’s superior accuracy over LR and suggesting future research directions.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 22 March 2024

Mohd Mustaqeem, Suhel Mustajab and Mahfooz Alam

Software defect prediction (SDP) is a critical aspect of software quality assurance, aiming to identify and manage potential defects in software systems. In this paper, we have…

Abstract

Purpose

Software defect prediction (SDP) is a critical aspect of software quality assurance, aiming to identify and manage potential defects in software systems. In this paper, we have proposed a novel hybrid approach that combines Gray Wolf Optimization with Feature Selection (GWOFS) and multilayer perceptron (MLP) for SDP. The GWOFS-MLP hybrid model is designed to optimize feature selection, ultimately enhancing the accuracy and efficiency of SDP. Gray Wolf Optimization, inspired by the social hierarchy and hunting behavior of gray wolves, is employed to select a subset of relevant features from an extensive pool of potential predictors. This study investigates the key challenges that traditional SDP approaches encounter and proposes promising solutions to overcome time complexity and the curse of the dimensionality reduction problem.

Design/methodology/approach

The integration of GWOFS and MLP results in a robust hybrid model that can adapt to diverse software datasets. This feature selection process harnesses the cooperative hunting behavior of wolves, allowing for the exploration of critical feature combinations. The selected features are then fed into an MLP, a powerful artificial neural network (ANN) known for its capability to learn intricate patterns within software metrics. MLP serves as the predictive engine, utilizing the curated feature set to model and classify software defects accurately.

Findings

The performance evaluation of the GWOFS-MLP hybrid model on a real-world software defect dataset demonstrates its effectiveness. The model achieves a remarkable training accuracy of 97.69% and a testing accuracy of 97.99%. Additionally, the receiver operating characteristic area under the curve (ROC-AUC) score of 0.89 highlights the model’s ability to discriminate between defective and defect-free software components.

Originality/value

Experimental implementations using machine learning-based techniques with feature reduction are conducted to validate the proposed solutions. The goal is to enhance SDP’s accuracy, relevance and efficiency, ultimately improving software quality assurance processes. The confusion matrix further illustrates the model’s performance, with only a small number of false positives and false negatives.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 13 February 2024

Wenqi Mao, Kexin Ran, Ting-Kwei Wang, Anyuan Yu, Hongyue Lv and Jieh-Haur Chen

Although extensive research has been conducted on precast production, irregular component loading constraints have received little attention, resulting in limitations for…

Abstract

Purpose

Although extensive research has been conducted on precast production, irregular component loading constraints have received little attention, resulting in limitations for transportation cost optimization. Traditional irregular component loading methods are based on past performance, which frequently wastes vehicle space. Additionally, real-time road conditions, precast component assembly times, and delivery vehicle waiting times due to equipment constraints at the construction site affect transportation time and overall transportation costs. Therefore, this paper aims to provide an optimization model for Just-In-Time (JIT) delivery of precast components considering 3D loading constraints, real-time road conditions and assembly time.

Design/methodology/approach

In order to propose a JIT (just-in-time) delivery optimization model, the effects of the sizes of irregular precast components, the assembly time, and the loading methods are considered in the 3D loading constraint model. In addition, for JIT delivery, incorporating real-time road conditions in the transportation process is essential to mitigate delays in the delivery of precast components. The 3D precast component loading problem is solved by using a hybrid genetic algorithm which mixes the genetic algorithm and the simulated annealing algorithm.

Findings

A real case study was used to validate the JIT delivery optimization model. The results indicated this study contributes to the optimization of strategies for loading irregular precast components and the reduction of transportation costs by 5.38%.

Originality/value

This study establishes a JIT delivery optimization model with the aim of reducing transportation costs by considering 3D loading constraints, real-time road conditions and assembly time. The irregular precast component is simplified into 3D bounding box and loaded with three-space division heuristic packing algorithm. In addition, the hybrid algorithm mixing the genetic algorithm and the simulated annealing algorithm is to solve the 3D container loading problem, which provides both global search capability and the ability to perform local searching. The JIT delivery optimization model can provide decision-makers with a more comprehensive and economical strategy for loading and transporting irregular precast components.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of 21