Search results

1 – 10 of 84
Article
Publication date: 27 November 2020

Fangfang Zhang, Fengyun Yan, Tijun Chen, Xiaohong Li and Zhen Wang

This paper aims to study the effect of load on the tribological behaviour of Cu-based composites, so as to obtain a suitable applied load on these composites.

Abstract

Purpose

This paper aims to study the effect of load on the tribological behaviour of Cu-based composites, so as to obtain a suitable applied load on these composites.

Design/methodology/approach

Cu-based composites were prepared by powder sintering with direct current electric current heating and tested by Universal Mechanical Test-3 with a ball-on-disk at room temperature.

Findings

The results showed that Cu-based composites are might suitable for working under low load. There is only mild damage on the surface under a load of 2 N. While it has microcracks and shows signs of cavitation at a certain depth at 20 N and 50 N. In addition, it is evident that there are three zones in the cross-section of the matrix, namely, a mechanical mixing layer, ceramic layer and substrate, respectively.

Originality/value

There are two wear mechanisms at different loads, and the evolution of worn surfaces with sliding time is also involved. Thus, the developed material can be used for light load sliding electrical contact material applications.

Details

Industrial Lubrication and Tribology, vol. 73 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 April 2018

Jian Feng Li, Qin Shi, HeJun Zhu, ChenYu Huang, Shuai Zhang, Weixiang Peng and ChangSheng Li

This paper aims to clarify the size and morphology of transition metal dichalcogenides has an impact on lubrication performance of Cu-based composites. This study is intended to…

Abstract

Purpose

This paper aims to clarify the size and morphology of transition metal dichalcogenides has an impact on lubrication performance of Cu-based composites. This study is intended to show that Cu-based electrical contact materials containing Nb0.91Ti0.09Se2 have better electrical and tribological properties than those containing NbSe2. The tribological properties of Cu-based with different Ti-dopped NbSe2 content were also discussed.

Design/methodology/approach

The NbSe2 and Nb0.91Ti0.09Se2 particles were fabricated by thermal solid state reaction method. The powder metallurgy technique was used to fabricate composites with varying Nb0.91Ti0.09Se2 mass fraction. The phase composition of Cu-based composites was identified by X-ray diffraction, and the morphology of NbSe2/Nb0.91Ti0.09Se2 and the worn surface of composites were characterized by scanning electron microscopy and transmission electron microscopy. In addition, the tribological properties of composites were appraised using a ball-on-disk multi-functional tribometer. The data of friction coefficient and resistivity were analyzed and the corresponding conclusion was drawn.

Findings

In comparison with the pure copper, Cu-based composites containing Nb0.91Ti0.09Se2/NbSe2 had a lower friction coefficient, illustrating the Nb0.91Ti0.09Se2 with nano-size particles prepared in this work is a perfect choice for the fabrication of excellent electrical contact composites. Compared to composites with NbSe2, composites containing Nb0.91Ti0.09Se2 have better tribological and electrical properties.

Research limitations/implications

Because of the use of thermal solid state reaction method, the size of NbSe2 and Nb0.91Ti0.09Se2 is relatively large. Therefore, the fabrication of finer particles of Nb0.91Ti0.09Se2 is encouraged.

Originality/value

In this paper, the authors discuss the tribological and electrical properties of Cu-based composites, and the value of optimum obtained as Nb0.91Ti0.09Se2 content is 15 Wt.%.

Details

Industrial Lubrication and Tribology, vol. 70 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 August 2022

Rongrong Li, Yanguo Yin, Kaiyuan Zhang, Ruhong Song and Qi Chen

This paper aims to investigate how ball milling (BM) and load influence transfer film on counterbody and the correlation between transfer film and tribological properties of…

Abstract

Purpose

This paper aims to investigate how ball milling (BM) and load influence transfer film on counterbody and the correlation between transfer film and tribological properties of copper-based composites.

Design/methodology/approach

The copper-based mixed powders preprocessed by BM for different times were used to manufacture sintered materials. Specimens were tested by a custom pin-on-flat linear reciprocating tribometer and characterized prior and after tests by optical microscope, scanning electron microscope and energy-dispersive spectroscopy. Image J® and Taylor-hobson-6 surface roughness meter were used to quantify the coverage and thickness of the transfer film.

Findings

Main results show that an appropriate amount of BM time and applied load can contribute to the formation of the transfer film on counterbody and effectively improve the tribological properties of the copper-based material. The transfer film coverage is linearly related to the friction coefficient, thickness of transfer film and wear volume. As the transfer film coverage increases, the coefficient of friction decreases. As the thickness of the transfer film increases, the amount of wear increases.

Originality/value

This work intends to control and optimize the formation of transfer film, thereby helping improve the tribological properties of materials and providing a reference to guide the preparation of Cu-based composites with excellent tribological properties.

Details

Industrial Lubrication and Tribology, vol. 74 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 March 2012

Recai Fatih Tunay and Cahit Kurbanoğlu

The purpose of this paper is to evaluate, by experimental investigation, the wear and friction performances of porous bearings under different operating conditions.

Abstract

Purpose

The purpose of this paper is to evaluate, by experimental investigation, the wear and friction performances of porous bearings under different operating conditions.

Design/methodology/approach

Two different compositions of self‐lubricating bearings were chosen: 90 percent Cu+10 percent Sn and 90 percent Cu+9 percent Sn+1 percent C. The bearings were produced with their final densities of 80 and 85 percent, and pressed at room temperature and high temperature.

Findings

The wear and friction properties of the sample bearings were determined at different running conditions such as temperature, applied load, and sliding speed. The variations of the weight loss with the sliding distance for different test conditions were presented. The results show that the weight loss and friction coefficient increase with the increasing sliding speed, density and temperature.

Originality/value

The wear and friction properties of the sample bearings were determined at different running conditions such as temperature, applied load, and sliding speed.

Details

Industrial Lubrication and Tribology, vol. 64 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 18 March 2024

Prosun Mandal, Srinjoy Chatterjee and Shankar Chakraborty

In many of today’s manufacturing industries, such as automobile, aerospace, defence, die and mould making, medical and electrical discharge machining (EDM) has emerged as an…

Abstract

Purpose

In many of today’s manufacturing industries, such as automobile, aerospace, defence, die and mould making, medical and electrical discharge machining (EDM) has emerged as an effective material removal process. In this process, a series of discontinuous electric discharges is used for removing material from the workpiece in the form of craters generating a replica of the tool into the workpiece in a dielectric environment. Appropriate selection of the tool electrode material and combination of input parameters is an important requirement for performance enhancement of an EDM process. This paper aims to optimize an EDM process using single-valued neutrosophic grey relational analysis using Cu-multi-walled carbon nanotube (Cu-MWCNT) composite tool electrode.

Design/methodology/approach

This paper proposes the application of grey relational analysis (GRA) in a single-valued neutrosophic fuzzy environment to identify the optimal parametric intermix of an EDM process while considering Cu-MWCNT composite as the tool electrode material. Based on Taguchi’s L9 orthogonal array, nine experiments are conducted at varying combinations of four EDM parameters, i.e. pulse-on time, duty factor, discharge current and gap voltage, with subsequent measurement of two responses, i.e. material removal rate (MRR) and tool wear rate (TWR). The electrodeposition process is used to fabricate the Cu-MWCNT composite tool.

Findings

It is noticed that both the responses would be simultaneously optimized at higher levels of pulse-on time (38 µs) and duty factor (8), moderate level of discharge current (5 A) and lower level of gap voltage (30 V). During bi-objective optimization (maximization of MRR and minimization of TWR) of the said EDM process, the achieved values of MRR and TWR are 243.74 mm3/min and 0.001034 g/min, respectively.

Originality/value

Keeping in mind the type of response under consideration, their measured values for each of the EDM experiments are expressed in terms of linguistic variables which are subsequently converted into single-valued neutrosophic numbers. Integration of GRA with single-valued neutrosophic sets would help in optimizing the said EDM process with the Cu-MWCNT composite tool while simultaneously considering truth-membership, indeterminacy membership and falsity-membership degrees in a human-centric uncertain decision-making environment.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 September 2013

Fred Lacerda Amorim, Armin Lohrengel, Guenter Schaefer and Tiago Czelusniak

This work aims to investigate the direct production of electrical discharge machining (EDM) electrodes by means of the selective laser sintering (SLS) technique using a new…

Abstract

Purpose

This work aims to investigate the direct production of electrical discharge machining (EDM) electrodes by means of the selective laser sintering (SLS) technique using a new non-conventional metal-matrix composite material (TiB2-CuNi). The influence and optimization of the main SLS parameters on the densification behavior and porosity is experimentally studied. EDM experiments are also performed to evaluate the electrodes performance.

Design/methodology/approach

The new EDM electrode material used was a powder system composed of TiB2 and CuNi. Making use of a designed systematic experimental methodology, the effects of layer thickness, laser scan speed and scan line spacing were optimized, where aspects such as densification behavior, porosity and surface morphology of the samples were analyzed through microstructural and surface analysis. EDM experiments were conducted under three different regimes in order to observe the electrodes behavior and performance. The results were compared with copper powder electrodes manufactured by SLS and EDMachined under the same conditions.

Findings

The experimental results showed that the direct SLS manufacturing of composite electrodes is feasible and promising. The laser scan speed has a high effect on the densification behavior of the samples, while the effect of scan line spacing on the porosity is more visible when the overlapping degree is considered. Surface morphology was not affected by the scan line spacing, whereas balling phenomenon was reported, regardless of the scan line spacing. The EDM results showed that the TiB2-CuNi electrodes had a much superior performance than the copper powder electrodes made by SLS, regardless of the EDM regime applied.

Research limitations/implications

Generally, the machine tool itself promotes some restrictions to the SLS process optimization. It is normally attributed to the characteristics of the laser type and the amount of energy that can be delivered to the powder bed. The present investigation could not cover all the optimization potential involved with the studied material due to limitations of the SLS machine tool used.

Originality/value

Significant results on the direct SLS manufacturing of a new non-conventional composite material, which has a great technological potential to be used as an EDM electrode material, are presented. Valuable guidelines are given in regard to the SLS optimization of TiB2-CuNi material and its performance as an EDM electrode. This work also provides a systematic methodology designed to be applied to the SLS process to produce EDM electrodes.

Details

Rapid Prototyping Journal, vol. 19 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 April 2022

Yubo Yang, Xiuhua Guo, Kexing Song, Fei Long, Xu Wang, Shaolin Li and Zhou Li

Copper matrix composites are widely used in high-voltage switches, electrified railways and other electric friction fields. The purpose of this study is to improve its wear…

148

Abstract

Purpose

Copper matrix composites are widely used in high-voltage switches, electrified railways and other electric friction fields. The purpose of this study is to improve its wear resistance and investigate the effect of hybrid carbon nanotubes (CNTs) and titanium diboride (TiB2) particles reinforced copper matrix composites on electrical wear performance.

Design/methodology/approach

CNTs and TiB2 particles were introduced into copper matrix simultaneously by powder metallurgy combined with electroless copper plating. Electrical wear performance of the composites was studied on self-made pin on disk electrical wear tester.

Findings

The results show that the friction coefficient and wear rate of (1CNTs–4TiB2)/Cu composite are respectively reduced by 40% and 25.3%, compared with single TiB2/Cu composites. The micron-sized TiB2 particles can hinder the plastic deformation of composites, and bear part of the load to weaken the wear rate of composites. CNTs with the self-lubricating property can form lubricating layer to reduce the friction coefficient of composites.

Originality/value

This work can provide a design method for further improving the wear properties of TiB2/Cu composites.

Details

Industrial Lubrication and Tribology, vol. 74 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 September 2016

Gülcan Toktaş and İmren Öztürk Yılmaz

The purpose of this study is to investigate the tribological properties of society of automotive engineers (SAE) 430B bronze-graphite composite, supplied in the form of machined…

Abstract

Purpose

The purpose of this study is to investigate the tribological properties of society of automotive engineers (SAE) 430B bronze-graphite composite, supplied in the form of machined and graphite embedded, used in sheet forming industry.

Design/methodology/approach

Pin-on-disc wear tests were performed under a constant normal load of 15 N and a sliding velocity of 60 mm/s. Due to the extended usage of Fe-based alloys in forming dies, pin materials were selected as cold work tool steel, gray and ductile irons. The weight losses of the disc (SAE 430B bronze-graphite composite) and the pins (Fe-based alloys) were measured separately under various sliding distances (5,000, 10,000 and 15,000 m). The average friction coefficients and wear tracks were obtained.

Findings

It is concluded that dry sliding behavior of SAE 430B bronze-graphite composite is the worst when operated with GGG-70 ductile iron due to its highest abrasive effect. The high hardness and nodular shape of graphite increased the abrasiveness of ductile iron. The improvement in wear resistance reached up to maximum 90 per cent and the degradation in friction coefficient was about 50 per cent by embedding graphite solids in bronze disc at dry sliding conditions.

Originality/value

Although the machined and graphite embedded bronze composites are indispensable parts of forming dies, there is no scientific knowledge on their dry sliding behavior.

Details

Industrial Lubrication and Tribology, vol. 68 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 September 2017

Sanjay Mohan Sharma and Ankush Anand

This paper aims to investigate the effect of CaF2 (calcium fluoride) addition as a solid lubricant on the friction and wear behaviour of sintered Fe-Cu-C materials under different…

Abstract

Purpose

This paper aims to investigate the effect of CaF2 (calcium fluoride) addition as a solid lubricant on the friction and wear behaviour of sintered Fe-Cu-C materials under different loads.

Design/methodology/approach

In this study, the effects of CaF2 added in varying weight percentages on the friction-wear properties of Fe-2Cu-0.8C alloys are investigated. Five Fe-2Cu-0.8C-based compositions comprising CaF2 in 0, 3, 6, 9 and 12 Wt.% were prepared using the single-stage compaction and sintering technique. Friction coefficient, wear loss, hardness and compressive strength of the specimens were measured. The worn-out surfaces were analysed using a scanning electron microscope. Friction and wear tests were carried out on pin-on-disc machine under dry sliding conditions at room temperature.

Findings

The alloy with 3 Wt.% CaF2 was found to be useful in improving wear and friction properties, whereas higher contents of CaF2 resulted in increased wear and friction. Apart from enhanced tribological properties, a slight decrease in the compressive strength was also observed in the 3-Wt.%-CaF2-added sample. Adhesion and abrasion were the prominent wear types observed during this study.

Originality/value

A new self-lubricating composite is developed where CaF2 is used as a solid lubricant in a Fe-Cu-C-based matrix. CaF2, being a high-temperature lubricant, is tried and tested for friction and wear at room temperature, and the results show that the addition of CaF2 in Fe-Cu-C improved its friction and wear properties. Thus, the developed material can be used for antifriction applications.

Details

Industrial Lubrication and Tribology, vol. 69 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 July 2021

Chen Li, Heng Wen, Kun Chen, Longxiao Zhang, Ting Xie, Yaru Shi and Junlong Zhang

This paper aims to develop a Mini-Tribometer for in-situ observation of subsurface.

Abstract

Purpose

This paper aims to develop a Mini-Tribometer for in-situ observation of subsurface.

Design/methodology/approach

To observe the change of the microstructure during wear in real time, an in-situ observation mini-tribometer was developed according to the requirements of the basic frictional experiments and carried out the verification experiments.

Findings

The subsurface images and the tribological data obtained from the mini-tribometer clearly show that the graphite in the matrix moves to the surface and takes part in lubrication mainly in the form of extrusion and peeling off, and the migration of graphite in the copper-based composite to the frictional interface to act as lubricant and to result in the decrease of the friction coefficient. The experimental results of the developed tribometer are accurate, which can provide important references for further research on the wear mechanism of materials.

Originality/value

The developed in-situ observation mini-tribometer can be used to observe the dynamic wear mechanism of the frictional pairs, which is very important for optimization of material design and tribological performances.

Details

Industrial Lubrication and Tribology, vol. 73 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 84