Search results

1 – 10 of 356
Article
Publication date: 4 October 2019

Shalina Sheik Muhamad, Jaharah A. Ghani, Che Hassan Che Haron and Hafizal Yazid

The purpose of this study is to investigate wear mechanisms of a multi-layered TiAlN/AlCrN-coated carbide tool during the milling of AISI 4340 steel under cryogenic machining.

Abstract

Purpose

The purpose of this study is to investigate wear mechanisms of a multi-layered TiAlN/AlCrN-coated carbide tool during the milling of AISI 4340 steel under cryogenic machining.

Design/methodology/approach

The wear progression was measured using a toolmaker microscope and an optical microscope. Later, a field emission scanning electron microscope and energy-dispersive X-ray analysis were used to investigate the wear mechanisms in detail.

Findings

A comprehensive analysis revealed that the main causes of tool wear mechanisms were abrasion and adhesion wear on the flank face.

Originality/value

The investigations presented in this paper may be used by the machining industry to prolong the tool life at higher cutting speed by the application of liquid nitrogen.

Details

Industrial Lubrication and Tribology, vol. 72 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 November 2016

Gaurav Dhuria, Rupinder Singh and Ajay Batish

The purpose of this paper is to study the effect of ultrasonic machining process parameters on surface quality while machining titanium alloy Ti-6Al-4V.

Abstract

Purpose

The purpose of this paper is to study the effect of ultrasonic machining process parameters on surface quality while machining titanium alloy Ti-6Al-4V.

Design/methodology/approach

Effect of cryogenic treatment (CT) of tool and work material was also explored in the study. Taguchi’s L18 orthogonal array was chosen for design of experiments and average surface roughness was measured.

Findings

Different modes of fracture were detected at work surface corresponding to varied input process parameters. Slurry grit size, power rating and tool material along with CT of work material were found to be the significant parameters affecting surface quality.

Originality/value

The results obtained have been modelled using artificial neural network approach.

Details

Engineering Computations, vol. 33 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 July 2016

K. Jayakrishna, R. Jeya Girubha and S. Vinodh

The purpose of this paper is to present the comparison of sustainability characteristics of conventional and computer numerical control (CNC) turning process. The sustainability…

Abstract

Purpose

The purpose of this paper is to present the comparison of sustainability characteristics of conventional and computer numerical control (CNC) turning process. The sustainability performance measures of both the processes were also being evaluated.

Design/methodology/approach

The study discusses the achievement of sustainability characteristics at the manufacturing process level of widely used industrial process, mechanical machining. Sustainable development includes improvements in material, product design and manufacturing process orientations. The present study narrates the sustainability characteristics at the process level.

Findings

The results confirm that the overall sustainability characteristics of CNC machining are potentially high considering the economic and environmental aspects of the machining parameters. A detailed life cycle analysis for both conventional and CNC turning was performed to evaluate the environmental impact and benefits.

Research limitations/implications

The study contributed in the paper is limited to process dimension of sustainability. The economic and environmental aspects of machining were also being discussed.

Practical implications

The conduct of the study enabled the comparison of sustainability characteristics of conventional and CNC-turning processes. The approach could also be expanded for the comparison of sustainability characteristics of other manufacturing processes also.

Originality/value

The study is an attempt to explore the process sustainability by the comparison of environmental impact of making processes. Hence, the contributions are original.

Details

Journal of Engineering, Design and Technology, vol. 14 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 29 July 2019

Nurul Hayati Binti Abdul Halim, Che Hassan Che Haron, Jaharah A. Ghani and Muammar Faiq Azhar

The purpose of this study is to present the tool life optimization of carbide-coated ball nose milling inserts when high-speed milling of Inconel 718 under cryogenic CO2

Abstract

Purpose

The purpose of this study is to present the tool life optimization of carbide-coated ball nose milling inserts when high-speed milling of Inconel 718 under cryogenic CO2 condition. The main aims are to analyze the influence level of each cutting parameter on the tool life and to identify the optimum parameters that can lengthen the tool life to the maximum.

Design/methodology/approach

The experimental layout was designed using Box–Behnken RSM where all parameters were arranged without combining their highest and lowest values of each factor at the same time. A total of 29 milling experiments were conducted. Then, a statistical analysis using ANOVA was conducted to identify the relationship between the controlled factors on tool life. After that, a predictive model was developed to predict the variation of tool life within the predetermined parameters.

Findings

Results from the experimental found that the longest tool life of 22.77 min was achieved at Vc: 120 m/min, fz: 0.2 mm/tooth, ap: 0.5 mm and ae: 0.2 mm. ANOVA suggests the tool life of 23.4 min can be reached at Vc: 120.06 m/min, fz: 0.15 mm/tooth, ap: 0.66 mm and ae: 0.53 mm. All four controlled factors have influenced the tool life with the feed rate and radial depth of cut (DOC) as the major contributors. The developed mathematical model accurately represented the tool life at an average error of 8.2 per cent when compared to the actual and predicted tool life.

Originality/value

These experimental and statistical studies were conducted using Box–Behnken RSM method under cryogenic CO2 condition. It is a proven well-known method. However, the cooling method used in this study is a new technique and its effects on metal cutting, especially in the milling process of Inconel 718, has not yet been explored.

Details

Industrial Lubrication and Tribology, vol. 73 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 December 2023

Nivin Vincent and Franklin Robert John

This study aims to understand the current production scenario emphasizing the significance of green manufacturing in achieving economic and environmental sustainability goals to…

Abstract

Purpose

This study aims to understand the current production scenario emphasizing the significance of green manufacturing in achieving economic and environmental sustainability goals to fulfil future needs; to determine the viability of particular strategies and actions performed to increase the process efficiency of electrical discharge machining; and to uphold the values of sustainability in the nonconventional manufacturing sector and to identify future works in this regard.

Design/methodology/approach

A thorough analysis of numerous experimental studies and findings is conducted. This prominent nontraditional machining process’s potential machinability and sustainability challenges are discussed, along with the current research to alleviate them. The focus is placed on modifications to the dielectric fluid, choosing affordable substitutes and treating consumable tool electrodes.

Findings

Trans-esterified vegetable oils, which are biodegradable and can be used as a substitute for conventional dielectric fluids, provide pollution-free machining with enhanced surface finish and material removal rates. Modifying the dielectric fluid with specific nanomaterials could increase the machining rate and demonstrate a decrease in machining flaws such as micropores, globules and microcracks. Tool electrodes subjected to cryogenic treatment have shown reduced tool metal consumption and downtime for the setup.

Practical implications

The findings suggested eco-friendly machining techniques and optimized control settings that reduce energy consumption, lowering operating expenses and carbon footprints. Using eco-friendly dielectrics, including vegetable oils or biodegradable dielectric fluids, might lessen the adverse effects of the electrical discharge machine operations on the environment. Adopting sustainable practices might enhance a business’s reputation with the public, shareholders and clients because sustainability is becoming increasingly significant across various industries.

Originality/value

A detailed general review of green nontraditional electrical discharge machining process is provided, from high-quality indexed journals. The findings and results contemplated in this review paper can lead the research community to collectively apply it in sustainable techniques to enhance machinability and reduce environmental effects.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 2 May 2023

Jiafeng Lu, Xiaolin Deng, Jing Tang and Xiaoyun Chen

When processing 11Cr-3Co-3W martensitic heat-resistant steel, the traditional pouring cooling method often appears large cutting force, high cutting temperature, serious tool wear…

Abstract

Purpose

When processing 11Cr-3Co-3W martensitic heat-resistant steel, the traditional pouring cooling method often appears large cutting force, high cutting temperature, serious tool wear and poor surface quality. This paper aims to use new cooling methods for processing this problem.

Design/methodology/approach

Different performance indicators such as cutting force, tool wear and surface quality were measured and analysed under different continuous milling times. The relationship between liquid nitrogen flow and cutting force and surface roughness was analysed and measured.

Findings

The results show that with the increase of liquid nitrogen flow, the cutting force decreases, especially the Fx component, which decreases by 10%. When the liquid nitrogen flow reaches 8 L/min, the effect of increasing the liquid nitrogen flow on reducing the cutting force becomes smaller. The cutting force reduced by up to 15%, and the tool life increased up to 20% using liquid nitrogen cryogenic cooling than in cutting liquids cooling. When minimal quantities of lubricant (MQL) was added, the cutting force was reduced by 23%, and the tool life increased by 25%. When the cutting speed increases from 100 m/min to 250 m/min, the cutting force with cutting liquid cooling does not change significantly while the cutting force with liquid nitrogen cooling decreases with the cutting speed increasing. It shows that liquid nitrogen cooling is more suitable for high-speed machining. After the cutting length reaches 66 m, the surface roughness of the workpiece using liquid nitrogen cooling method larger than that of the cutting liquid cooling method. When MQL is added into liquid nitrogen, the lubrication performance is improved, and the surface roughness of the workpiece is reduced about 8%.

Originality/value

Many studies had focused on the improvement of tool life and surface quality by different cooling methods, or on the injection process and chip mechanism. However, there are few relevant studies on the variation of cooling and lubrication properties with the change of cutting length in liquid nitrogen cryogenic processing. In this research, different performance indicators such as cutting force, tool wear and surface quality were measured and analysed under different continuous milling times. The relationship between liquid nitrogen flow and cutting force and surface roughness was analysed and measured.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2023-0053/

Details

Industrial Lubrication and Tribology, vol. 75 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 August 2019

Husandeep Sharma, Khushdeep Goyal and Sunil Kumar

Tool steel (AISI D3) is a preferred material for industrial usage. Some of the typical applications of D3 tool steel are blanking and forming dies, forming rolls, press tools and…

Abstract

Purpose

Tool steel (AISI D3) is a preferred material for industrial usage. Some of the typical applications of D3 tool steel are blanking and forming dies, forming rolls, press tools and punches bushes. It is used under conditions where high resistance to wear or to abrasion is required and also for resistance to heavy pressure rather than to sudden shock is desirable. It is a high carbon and high chromium steel. Therefore, wire electric discharge machining (WEDM) is used to machine this tool steel. The paper aims to discuss these issues.

Design/methodology/approach

The present experimental investigation evaluates the influence of cryogenically treated wires on material removal rate (MRR) and surface roughness (SR) for machining of AISI D3 steel using the WEDM process. Two important process responses MRR and SR have been studied as a function of four different control parameters, namely pulse width, time between two pulses, wire mechanical tension and wire feed rate.

Findings

It was found that pulse width was the most significant parameter which affects the MRR and SR. Better surface finish was obtained with cryogenically treated zinc coated wire than brass wire.

Originality/value

The review of the literature indicates that there is limited published work on the effect of machining parameters in WEDM in cryogenic treated wires. Therefore, in this research work, it was decided to evaluate the effect of cryogenically treated wires on WEDM.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 31 July 2019

Bobby Oedy Pramoedyo Soepangkat, Rachmadi Norcahyo, Bambang Pramujati and M. Abdul Wahid

The purpose of this study is to investigate the prediction and optimization of multiple performance characteristics in the face milling process of tool steel ASSAB XW-42.

Abstract

Purpose

The purpose of this study is to investigate the prediction and optimization of multiple performance characteristics in the face milling process of tool steel ASSAB XW-42.

Design/methodology/approach

The face milling parameters (cutting speed, feed rate and axial depth of cut) and flow rate (FR) of cryogenic cooling were optimized with consideration of multiple performance characteristics, i.e. surface roughness (SR), cutting force (Fc) and metal removal rate (MRR). FR of cryogenic cooling has two levels, whereas the three face milling parameters each have three levels. Using Taguchi method, an L18 mixed-orthogonal array was selected as the design of experiments. The rough estimation of the optimum face milling parameters was determined by using grey fuzzy analysis. The global optimum face milling parameters were searched by applying the backpropagation neural network-based genetic algorithm (BPNN-GA) method.

Findings

The optimum SR, cutting force (Fc) and MRR could be obtained by setting FR, cutting speed, feed rate and axial depth of cut at 0.5 l/min, 280 m/min, 90 mm/min and 0.2 mm, respectively. The experimental confirmation results showed that BPNN-based GA optimization method could accurately predict and significantly improve all of the multiple performance characteristics.

Originality/value

To the best of the authors’ knowledge, there were no publications available regarding multi-response optimization using the combination of grey fuzzy analysis and BPNN-based GA methods during cryogenically face milling process.

Details

Engineering Computations, vol. 36 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 October 2021

Amrita Maddamasetty, Kamesh Bodduru, Siva Bevara, Rukmini Srikant Revuru and Sanjay Kumar

Inconel 718 is difficult to machine due to its high toughness and study hardenability. Though the use of cutting fluids alleviates the problem, it is not sustainable. So, supply…

Abstract

Purpose

Inconel 718 is difficult to machine due to its high toughness and study hardenability. Though the use of cutting fluids alleviates the problem, it is not sustainable. So, supply of a small quantity of specialized coolant to the machining zone or use of a solid lubricant is a possible solution. The purpose of the present work is to improve machinability of Inconel718 using graphene nanoplatelets.

Design/methodology/approach

In the present study, graphene is used in the machining of Inconel 718 alloy. Graphene is applied in the following two forms: as a solid lubricant and as an inclusion in cutting fluid. Graphene-based self-lubricating tool and graphene added nanofluids are prepared and applied to turning of Inconel 718 at varying cutting velocities. Performances are compared by measuring cutting forces, cutting temperature, tool wear and surface roughness.

Findings

Graphene, in both forms, showed superior performance compared to dry machining. In total, 0.3 Wt.% graphene added nanofluids showed the lowest cutting tool temperature and flank wear with 44.95% and 83.37% decrease, respectively, compared to dry machining and lowest surface roughness, 0.424 times compared to dry machining at 87 m/min.

Originality/value

Graphene could improve the machinability of Inconel 718 when used in tools as a solid lubricant and also when used as a dispersant in cutting fluid. Graphene used as a dispersant in cutting fluid is found to be more effective.

Details

World Journal of Engineering, vol. 19 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Content available
Article
Publication date: 1 April 2005

129

Abstract

Details

Industrial Lubrication and Tribology, vol. 57 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 356