Search results

1 – 10 of 13
Open Access
Article
Publication date: 16 November 2015

Aibing Ji, Hui Liu, Hong-jie Qiu and Haobo Lin

– The purpose of this paper is to build a novel data envelopment analysis (DEA) model to evaluate the efficiencies of decision making units (DMUs).

4240

Abstract

Purpose

The purpose of this paper is to build a novel data envelopment analysis (DEA) model to evaluate the efficiencies of decision making units (DMUs).

Design/methodology/approach

Using the Choquet integrals as aggregating tool, the authors give a novel DEA model to evaluate the efficiencies of DMUs.

Findings

It extends DEA model to evaluate the DMU with interactive variables (inputs or outputs), the classical DEA model is a special form. At last, the authors use the numerical examples to illustrate the performance of the proposed model.

Practical implications

The proposed DEA model can be used to evaluate the efficiency of the DMUs with multiple interactive inputs and outputs.

Originality/value

This paper introduce a new DEA model to evaluate the DMU with interactive variables (inputs or outputs), the classical DEA model is a special form.

Details

Management Decision, vol. 53 no. 10
Type: Research Article
ISSN: 0025-1747

Keywords

Open Access
Article
Publication date: 9 December 2022

Jae-Dong Hong

The recent COVID-19 outbreak and severe natural disasters make the design of the humanitarian supply chain network (HSCN) a crucial strategic issue in a pre-disaster scenario. The…

Abstract

Purpose

The recent COVID-19 outbreak and severe natural disasters make the design of the humanitarian supply chain network (HSCN) a crucial strategic issue in a pre-disaster scenario. The HSCN design problem deals with the location/allocation of emergency response facilities (ERFs). This paper aims to propose and demonstrate how to design an efficient HSCN configuration under the risk of ERF disruptions.

Design/methodology/approach

This paper considers four performance measures simultaneously for the HSCN design by formulating a weighted goal programming (WGP) model. Solving the WGP model with different weight values assigned to each performance measure generates various HSCN configurations. This paper transforms a single-stage network into a general two-stage network, treating each HSCN configuration as a decision-making unit with two inputs and two outputs. Then a two-stage network data envelopment analysis (DEA) approach is applied to evaluate the HSCN schemes for consistently identifying the most efficient network configurations.

Findings

Among various network configurations generated by the WGP, the single-stage DEA model does not consistently identify the top-ranked HSCN schemes. In contrast, the proposed transformation approach identifies efficient HSCN configurations more consistently than the single-stage DEA model. A case study demonstrates that the proposed transformation method could provide a more robust and consistent evaluation for designing efficient HSCN systems. The proposed approach can be an essential tool for federal and local disaster response officials to plan a strategic design of HSCN.

Originality/value

This study presents how to transform a single-stage process into a two-stage network process to apply the general two-stage network DEA model for evaluating various HSCN configurations. The proposed transformation procedure could be extended for designing some supply chain systems with conflicting performance metrics more effectively and efficiently.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. 13 no. 1
Type: Research Article
ISSN: 2042-6747

Keywords

Content available
Book part
Publication date: 11 September 2020

Abstract

Details

Applications of Management Science
Type: Book
ISBN: 978-1-83867-001-6

Content available
Article
Publication date: 14 March 2008

Luiz Moutinho and Kun-Huang Huarng

36

Abstract

Details

Journal of Modelling in Management, vol. 3 no. 1
Type: Research Article
ISSN: 1746-5664

Open Access
Article
Publication date: 31 December 2010

Anna Eremina and Chan-Hyun Sohn

Recently the route connecting the trans-Korean railway and the trans-Siberian railway has become of particular interest for many academics and policy-makers in East Asian…

Abstract

Recently the route connecting the trans-Korean railway and the trans-Siberian railway has become of particular interest for many academics and policy-makers in East Asian countries. The extensive review of previous studies, however, reveals that literature on the subject is lacking solid analytical framework. Most studies are one-sided, focusing on the political aspects of the issue or paying little attention to the economic aspects of the problem.

This study intends to develop an analytical framework through which the most efficient route among four major alternative routes connecting the trans-Korean and trans-Siberian railways can be identified. It attempts to assign priorities to the four alternative routes according to their level of economic efficiency.

This study utilizes a simple cost-benefit analysis in evaluating the four routes. Cost side, transportation time, effectiveness of customs procedures, and gauge difference are selected as the main economic factors. The volume of cargo, industrial production in adjacent regions, access to natural resources, and market size and foreign investment climate are used to evaluate the benefits of the routes.

The study concludes that Route 3, which connects ‘Busan - Seoul (South Korea) –Pyongyang -Sinuiju (North Korea) –Shenyang –Beijing - Erenhot (China) –Ulaanbaatar (Mongolia) –Ulan-Ude - Moscow (Russia)’ is the most efficient route.

Details

Journal of International Logistics and Trade, vol. 8 no. 2
Type: Research Article
ISSN: 1738-2122

Keywords

Open Access
Article
Publication date: 16 October 2017

Vahid Shokri Kahi, Saeed Yousefi, Hadi Shabanpour and Reza Farzipoor Saen

The purpose of this paper is to develop a novel network and dynamic data envelopment analysis (DEA) model for evaluating sustainability of supply chains. In the proposed model…

4577

Abstract

Purpose

The purpose of this paper is to develop a novel network and dynamic data envelopment analysis (DEA) model for evaluating sustainability of supply chains. In the proposed model, all links can be considered in calculation of efficiency score.

Design/methodology/approach

A dynamic DEA model to evaluate sustainable supply chains in which networks have series structure is proposed. Nature of free links is defined and subsequently applied in calculating relative efficiency of supply chains. An additive network DEA model is developed to evaluate sustainability of supply chains in several periods. A case study demonstrates applicability of proposed approach.

Findings

This paper assists managers to identify inefficient supply chains and take proper remedial actions for performance optimization. Besides, overall efficiency scores of supply chains have less fluctuation. By utilizing the proposed model and determining dual-role factors, managers can plan their supply chains properly and more accurately.

Research limitations/implications

In real world, managers face with big data. Therefore, we need to develop an approach to deal with big data.

Practical implications

The proposed model offers useful managerial implications along with means for managers to monitor and measure efficiency of their production processes. The proposed model can be applied in real world problems in which decision makers are faced with multi-stage processes such as supply chains, production systems, etc.

Originality/value

For the first time, the authors present additive model of network-dynamic DEA. For the first time, the authors outline the links in a way that carry-overs of networks are connected in different periods and not in different stages.

Details

Industrial Management & Data Systems, vol. 117 no. 9
Type: Research Article
ISSN: 0263-5577

Keywords

Open Access
Article
Publication date: 2 September 2016

Mohammad Sadegh Pakkar

This paper aims to propose an integration of the analytic hierarchy process (AHP) and data envelopment analysis (DEA) methods in a multiattribute grey relational analysis (GRA…

4884

Abstract

Purpose

This paper aims to propose an integration of the analytic hierarchy process (AHP) and data envelopment analysis (DEA) methods in a multiattribute grey relational analysis (GRA) methodology in which the attribute weights are completely unknown and the attribute values take the form of fuzzy numbers.

Design/methodology/approach

This research has been organized to proceed along the following steps: computing the grey relational coefficients for alternatives with respect to each attribute using a fuzzy GRA methodology. Grey relational coefficients provide the required (output) data for additive DEA models; computing the priority weights of attributes using the AHP method to impose weight bounds on attribute weights in additive DEA models; computing grey relational grades using a pair of additive DEA models to assess the performance of each alternative from the optimistic and pessimistic perspectives; and combining the optimistic and pessimistic grey relational grades using a compromise grade to assess the overall performance of each alternative.

Findings

The proposed approach provides a more reasonable and encompassing measure of performance, based on which the overall ranking position of alternatives is obtained. An illustrated example of a nuclear waste dump site selection is used to highlight the usefulness of the proposed approach.

Originality/value

This research is a step forward to overcome the current shortcomings in the weighting schemes of attributes in a fuzzy multiattribute GRA methodology.

Abstract

Details

Academia Revista Latinoamericana de Administración, vol. 32 no. 2
Type: Research Article
ISSN: 1012-8255

Open Access
Article
Publication date: 31 January 2024

Joonho Na, Qia Wang and Chaehwan Lim

The purpose of this study is to analyze the environmental efficiency level and trend of the transportation sector in the upper–mid–downstream of the Yangtze River Economic Belt…

Abstract

Purpose

The purpose of this study is to analyze the environmental efficiency level and trend of the transportation sector in the upper–mid–downstream of the Yangtze River Economic Belt and the JingJinJi region in China and assess the effectiveness of policies for protecting the low-carbon environment.

Design/methodology/approach

This study uses the meta-frontier slack-based measure (SBM) approach to evaluate environmental efficiency, which targets and classifies specific regions into regional groups. First, this study employs the SBM with the undesirable outputs to construct the environmental efficiency measurement models of the four regions under the meta-frontier and group frontiers, respectively. Then, this study uses the technology gap ratio to evaluate the gap between the group frontier and the meta-frontier.

Findings

The analysis reveals several key findings: (1) the JingJinJi region and the downstream of the YEB had achieved the overall optimal production technology in transportation than the other two regions; (2) significant technology gaps in environmental efficiency were observed among these four regions in China; and (3) the downstream region of the YEB exhibited the lowest levels of energy consumption and excessive CO2 emissions.

Originality/value

To evaluate the differences in environmental efficiency resulting from regions and technological gaps in transportation, this study employs the meta-frontier model, which overcomes the limitation of traditional environmental efficiency methods. Furthermore, in the practical, the study provides the advantage of observing the disparities in transportation efficiency performed by the Yangtze River Economic Belt and the Beijing–Tianjin–Hebei regions.

Details

Journal of International Logistics and Trade, vol. 22 no. 1
Type: Research Article
ISSN: 1738-2122

Keywords

Open Access
Article
Publication date: 15 December 2023

Nicola Castellano, Roberto Del Gobbo and Lorenzo Leto

The concept of productivity is central to performance management and decision-making, although it is complex and multifaceted. This paper aims to describe a methodology based on…

Abstract

Purpose

The concept of productivity is central to performance management and decision-making, although it is complex and multifaceted. This paper aims to describe a methodology based on the use of Big Data in a cluster analysis combined with a data envelopment analysis (DEA) that provides accurate and reliable productivity measures in a large network of retailers.

Design/methodology/approach

The methodology is described using a case study of a leading kitchen furniture producer. More specifically, Big Data is used in a two-step analysis prior to the DEA to automatically cluster a large number of retailers into groups that are homogeneous in terms of structural and environmental factors and assess a within-the-group level of productivity of the retailers.

Findings

The proposed methodology helps reduce the heterogeneity among the units analysed, which is a major concern in DEA applications. The data-driven factorial and clustering technique allows for maximum within-group homogeneity and between-group heterogeneity by reducing subjective bias and dimensionality, which is embedded with the use of Big Data.

Practical implications

The use of Big Data in clustering applied to productivity analysis can provide managers with data-driven information about the structural and socio-economic characteristics of retailers' catchment areas, which is important in establishing potential productivity performance and optimizing resource allocation. The improved productivity indexes enable the setting of targets that are coherent with retailers' potential, which increases motivation and commitment.

Originality/value

This article proposes an innovative technique to enhance the accuracy of productivity measures through the use of Big Data clustering and DEA. To the best of the authors’ knowledge, no attempts have been made to benefit from the use of Big Data in the literature on retail store productivity.

Details

International Journal of Productivity and Performance Management, vol. 73 no. 11
Type: Research Article
ISSN: 1741-0401

Keywords

1 – 10 of 13