Search results

1 – 10 of 273
Article
Publication date: 1 October 2018

Yunlong Zhong, Lijian Wu, Youtong Fang and Xiaoyan Huang

The purpose of this paper is to investigate and restrain the cross-coupling effect among X, Y and Z-axes of a three degrees of freedom hybrid magnetic bearing (3-DOF HMB). The…

Abstract

Purpose

The purpose of this paper is to investigate and restrain the cross-coupling effect among X, Y and Z-axes of a three degrees of freedom hybrid magnetic bearing (3-DOF HMB). The influence of the cross-coupling effect on the force characteristics and stiffnesses are analysed. Two additional methods are proposed to eliminate the cross-coupling effect.

Design/methodology/approach

Analysis with finite element method (FEM) is time-consuming because of the requirement of a 3D model for the studied 3-DOF HMB. Hence, an improved magnetic circuit model considering the leakage, cross-coupling and saturation effects is used to investigate the cross-coupling effect in this paper. In addition, two restraining methods are proposed. One is adding an auxiliary coil between radial and axial stators. The other is adding an iron ring between the PM and radial or axial stator.

Findings

The X-axis (or Y-axis) force characteristics and stiffnesses are significantly influenced by the Z-axis current, while other axes force characteristics and stiffnesses do not show the cross-coupling effect. Moreover, this cross-coupling effect is inversely related to the distance between axial thrust disk and radial MB part. Besides, adding an auxiliary coil can effectively eliminate the cross-coupling effect in whole work range and adding an iron ring can reduce the cross-coupling effect.

Originality/value

The cross-coupling effect and its restraining methods of a 3-DOF HMB are investigated, which is beneficial to the design and control of such 3-DOF HMB.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2012

Z.Q. Zhu and Z. Azar

The purpose of this paper is to investigate the influence of end‐effect and cross‐coupling on the torque‐speed characteristics of switched flux permanent magnet (SFPM) machines.

Abstract

Purpose

The purpose of this paper is to investigate the influence of end‐effect and cross‐coupling on the torque‐speed characteristics of switched flux permanent magnet (SFPM) machines.

Design/methodology/approach

The torque‐speed characteristics are predicted using two different methods. These are direct and indirect finite element methods, at different cross‐coupling levels, namely, full cross‐coupling on both PM flux linkage and dq‐axis inductances, partial cross‐coupling on the PM flux linkage only and without cross‐coupling.

Findings

The influence of the cross‐coupling on dq‐axis inductances of the studied machine is relatively small. However, it is more significant on the PM flux linkage. Therefore, the partial cross‐coupling model, which is much easier and faster, exhibits almost the same accuracy as the full cross‐coupling model. Furthermore, the end‐effect causes a large reduction in torque‐speed characteristics. However, such a reduction is more significant in the flux weakening operation region.

Originality/value

This is the first time that the influence of end‐effect of SFPM machines on the torque‐speed characteristics, especially in flux weakening region, and on the dq‐axis inductances has been investigated.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 September 2004

Boštjan Polajžer, Gorazd Štumberger, Drago Dolinar and Kay Hameyer

The dynamic model of radial active magnetic bearings, which is based on the current and position dependent partial derivatives of flux linkages and radial force characteristics…

Abstract

The dynamic model of radial active magnetic bearings, which is based on the current and position dependent partial derivatives of flux linkages and radial force characteristics, is determined using the finite element method. In this way, magnetic nonlinearities and cross‐coupling effects are considered more completely than in similar dynamic models. The presented results show that magnetic nonlinearities and cross‐coupling effects can change the electromotive forces considerably. These disturbing effects have been determined and can be incorporated into the real‐time realization of nonlinear control in order to achieve cross‐coupling compensations.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 23 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 26 August 2014

K. Wang, Z.Q. Zhu, G. Ombach and W. Chlebosz

The purpose of this paper is to investigate torque ripple and magnetic force on the teeth in interior permanent magnet (IPM) machines over a wide range of speed operation for…

Abstract

Purpose

The purpose of this paper is to investigate torque ripple and magnetic force on the teeth in interior permanent magnet (IPM) machines over a wide range of speed operation for electrical power steering (EPS) applications.

Design/methodology/approach

The flux-weakening capability of IPM machines has been analysed by finite element method considering the effect of cross-coupling between d- and q-axis current. The traditional method of analysing torque ripple is based on constant torque and flux-weakening region. However, the cross-coupling need to be considered when applying this technique to flux-weakening region. Meanwhile, the torque ripple with current amplitude and angle and with different speed in the flux-weakening region is also investigated. In addition, the magnetic force on the teeth due to the separated teeth with stator yoke is also investigated during the constant torque and flux-weakening region.

Findings

The torque ripple and magnetic force on teeth in IPM machine are dependent on current and current angle. Both the lowest torque ripple and magnetic force on teeth exist over the whole torque-speed region.

Research limitations/implications

The purely sinusoidal currents are applied in this analysis and the effects of harmonics in the current on torque ripple and magnetic force on teeth are not considered in this application. The 12-slot/10-pole IPM machine has been employed in this analysis, but this work can be continued to investigate different slot/pole number combinations.

Originality/value

This paper has analysed the torque ripple and magnetic force on the teeth in IPM machines for EPS application over a wide range of operation speed, which are the main cause of vibration and acoustic noise. The variation of torque ripple with current amplitude and angle as well as speed in the flux-weakening region is also investigated. In addition, the magnetic force on the teeth is also investigated over the whole torque-speed region.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 19 September 2019

Jian Wang, Jing Feng Shen and Ya Wen Fan

The spherical hybrid sliding bearings (SHSBs) can be used in ultra-precision and heavy-duty machine tools. However, there is little related research for these bearings. The…

Abstract

Purpose

The spherical hybrid sliding bearings (SHSBs) can be used in ultra-precision and heavy-duty machine tools. However, there is little related research for these bearings. The purpose of this study is to investigate the static characteristics and effect factors affecting SHSBs by fluid lubrication.

Design/methodology/approach

Based on the theories of fluid lubrication, the Reynolds equation of general Newtonian fluid is derived to obtain the steady-state lubrication equation. The system is solved by the finite difference method and the relaxation iterative method on the staggered grid to obtain the thickness and the pressure distribution of the oil film. The radial and axial load capacities of SHSBs are determined by the pressure field integration over the spherical surface.

Findings

The results show that the parameters such as oil supply pressure, bearing clearance, eccentricity ratio, rotating speed and orifices’ number affecting the static characteristics of bearings are significant and the cross-coupling effect exists.

Originality/value

The lubrication model of SHSB is established to analyze the pressure distribution with a variety of oil film thickness. The laws of oil supply pressure, bearing clearance, eccentricity ratio, rotating speed and orifices’ number on the load capacities are researched.

Details

Industrial Lubrication and Tribology, vol. 72 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 June 1965

Under this heading are published regularly abstracts of all Reports and Memoranda of the Aeronautical Research Council, Technical Reports and Translations of the United States…

Abstract

Under this heading are published regularly abstracts of all Reports and Memoranda of the Aeronautical Research Council, Technical Reports and Translations of the United States National Aeronautics and Space Administration and publications of other similar Research Bodies as issued.

Details

Aircraft Engineering and Aerospace Technology, vol. 37 no. 6
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 6 November 2017

Jiali Zhou, Bo Zhang and Dongyuan Qiu

This paper aims to analyze the frequency characteristics of wireless power transfer (WPT) systems with relay resonators in terms of the power delivered to the load and system…

Abstract

Purpose

This paper aims to analyze the frequency characteristics of wireless power transfer (WPT) systems with relay resonators in terms of the power delivered to the load and system efficiency. Based on the analytical results, system parameters can be optimized to achieve maximum power transfer and higher system efficiency.

Design/methodology/approach

Based on Kirchhoff’s voltage law equations, WPT systems with relay resonators are described by the coupled linear second-order differential equations. Splitting frequencies are estimated by using the matrix theory. In addition, critical coupling conditions are demonstrated based on discriminant analysis.

Findings

It was found that multi-maximum values exist for the power delivered to the load and total system efficiency owing to multiple eigenfrequencies of the system. Also, frequency conditions of maximum power transfer and system efficiency, as well as their critical coupling conditions, were quantitatively estimated.

Research limitations/implications

During our analytical process, we assume that quality factors of resonators in the system are high and the crossing coupling between resonators is negligible.

Originality/value

In previous works, the exact analysis of frequency characteristics is limited to WPT systems with two resonators. The appealing feature of this work lies in its ability to present a simplified analytical method with negligible approximation errors for WPT systems with relay resonators.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 January 2011

Grzegorz Ombach

In the last few years, the understanding of environmental problems has grown. Car producers – original equipment manufacturers – are aiming to reduce fuel consumption and…

1110

Abstract

Purpose

In the last few years, the understanding of environmental problems has grown. Car producers – original equipment manufacturers – are aiming to reduce fuel consumption and pollution. In order to fulfil these aims, new technologies have been launched. Many hydraulics systems have been removed and replaced with electric ones, e.g. power steering, water and oil pump, etc. In this paper, an electromechanical subsystem used in an automotive application is analyzed. The subsystem is composed of interior permanent synchronous magnet motor and electronic control unit. The range of mechanical output power for studied system is up to 1 kW. The aim of this paper is to compare electromechanical systems working with different on‐board voltage levels in order to find the optimum balance between motors' and electronics' efficiency. This will help to decrease the total system's weight, the consequence of which will decrease fuel consumption and reduce CO2 emissions.

Design/methodology/approach

During the analysis, the reduced order modelling (ROM) techniques has been applied. First, with utilization of finite‐elemente‐methode the basic motor's parameter like: synchronous inductance and flux per pole as a function of the direct‐axis current and also the quadrature‐axis current are calculated. In the second step, these parameters are used in the system simulation. During this simulation, the maximum torque per ampere control strategy together with ROM techniques was used.

Findings

As a result, the performance of the system for different voltage levels has been obtained. Additionally, the important factors for an electromechanical system, such as maximum power density, sizing and cost of the total electromechanical system, have been compared.

Practical implications

The performed comparison shows that the cost optimized system should work with the higher voltage, where the electric motor size is reduced ca. 25 per cent. This result is also valid for different electromechanical systems in an automotive area, e.g. automated manual transmission, engine cooling and electric compressor.

Originality/value

It is the first paper, where electric power steering system design for different on‐board voltage levels has been systematically analyzed and compared. Results from this paper can be also applied to different electromechanical systems mounted in hybrid or electric cars.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 September 2010

Adnan Maqsood and Tiauw Hiong Go

The purpose of this paper is to describe the longitudinal dynamics of a hover‐capable rigid‐winged unmanned aerial vehicles (UAV) under various equilibrium flight conditions. The…

1135

Abstract

Purpose

The purpose of this paper is to describe the longitudinal dynamics of a hover‐capable rigid‐winged unmanned aerial vehicles (UAV) under various equilibrium flight conditions. The effects of the variable‐incidence wing in comparison with the fixed in‐incidence wing on the dynamics of UAV are also discussed.

Design/methodology/approach

The aerodynamic modeling of the vehicle covers both pre‐stall and post‐stall regimes using a three‐dimensional vortex lattice method incorporating viscous corrections. The trim states across a velocity spectrum are evaluated using a nonlinear constrained optimization scheme based on sequential quadratic programming. Then linearized dynamic analysis around trim states is carried out in order to compare the characteristics of the conventional platform with the modified platform incorporating variable‐incidence wing.

Findings

It is found that with the variable‐incidence wing, the longitudinal equilibrium flights can be achieved with reduced thrust‐to‐weight ratio demands and lower elevator deflection. However, the use of the variable‐incidence wing changes the dynamic characteristics of the vehicle considerably as indicated through the linear dynamic analysis.

Research limitations/implications

The results presented in this paper are based on linear dynamic analysis about static trim point data. Further analysis taking into account nonlinearity, the unsteady aerodynamic effects and associated cross‐coupling because of asymmetric forces may be needed to reveal the true dynamics of the vehicle under unsteady maneuvers.

Practical implications

The variable‐incidence wing is a useful design feature to reduce the thrust‐to‐weight ratio requirements and to increase elevator control authority, however its effect on the dynamics warrants further investigation.

Originality/value

This is the first paper highlighting the effects of variable‐incidence wing on an agile hover‐capable UAV.

Details

Aircraft Engineering and Aerospace Technology, vol. 82 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 24 June 2019

Dawid Wajnert and Bronislaw Tomczuk

The purpose of this paper is to create a reliable nonlinear magnetic equivalent circuit (NMEC) of the hybrid magnetic bearing (HMB). Commonly used magnetic equivalent circuits of…

Abstract

Purpose

The purpose of this paper is to create a reliable nonlinear magnetic equivalent circuit (NMEC) of the hybrid magnetic bearing (HMB). Commonly used magnetic equivalent circuits of HMB omit a saturation effect of the magnetic material as well as the leakage and fringing flux. It results in imprecise modelling of the magnetic field distribution. On the other hand, only 3D finite element analysis (FEA) can be used to precisely simulate the magnetic field in this type of the magnetic bearing. The proposed NMEC incorporates the saturation effect of the magnetic material, as well as the leakage and fringing flux.

Design/methodology/approach

The magnetic equivalent circuit of presented HMB is proposed to obtain a reliable model that ensures short calculation time. Developed NMEC incorporates the phenomena as the saturation effect, as well as the leakage and fringing flux. The reluctance of the air gap that includes the fringing flux was calculated using 3D FEA. Kirchhoffs’ laws were used to create a set of nonlinear equations that were iteratively solved by Broyden’s method.

Findings

Incorporating into NMEC of the HMB a saturation effect of the magnetic material, as well as the leakage and fringing flux, resulted in the accurate model that was in good agreement with 3 D finite element model and the real object. The developed NMEC offers the calculation time in the range of miliseconds, therefore can be successfully used in the engineering design instead of the FEM.

Originality/value

Presented NMEC can be considered as a fundamental model that can be successfully used for accurate and fast simulation of the HMB. Proposed NMEC includes considerable factors that decide about the model accuracy such as the saturation effect of the ferromagnetic material and the leakage and fringing flux. The developed NMEC can be used in the optimization procedures and for simulations of dynamic responses.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 273