Search results

1 – 10 of 504
Article
Publication date: 28 November 2019

S. Hoseinzadeh, S.M. Taheri Otaghsara, M.H. Zakeri Khatir and P.S. Heyns

The purpose of this study is to investigate the pulsating flow in a three-dimensional channel. Channel flow is laminar and turbulent. After validation, the effect of different…

Abstract

Purpose

The purpose of this study is to investigate the pulsating flow in a three-dimensional channel. Channel flow is laminar and turbulent. After validation, the effect of different channel cross-sectional geometries (circular, hexagonal and triangular) with the pulsating flow are investigated. For this purpose, the alumina nanofluid was considered as a working fluid with different volume percentages (0 per cent [pure water], 3 per cent and 5 per cent).

Design/methodology/approach

In this study, the pulsatile flow was investigated in a three-dimensional channel. Channel flow is laminar and turbulent.

Findings

The results show that the fluid temperature decreases by increasing the volume percentage of particles of Al2O3; this is because of the fact that the input energy through the wall boundary is a constant value and indicates that with increasing the volume percentage, the fluid can save more energy at a constant temperature. And by adding Al2O3 nanofluid, thermal performance improves in channels, but it should be considered that the use of nanofluid causes a pressure drop in the channel.

Originality/value

Alumina/water nanofluid with the pulsating flow was investigated and compared in three different cross-sectional channel geometries (circular, hexagonal and triangular). The effect of different volume percentages (0 per cent [pure water], 3 per cent and 5 per cent) of Al2O3 nanofluid on temperature, velocity and pressure are studied.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 2016

Hsien-Hung Ting and Shuhn-Shyurng Hou

The purpose of this paper is to numerically investigate the convective heat transfer of water-based CuO nanofluids flowing through a square cross-section duct under constant heat…

Abstract

Purpose

The purpose of this paper is to numerically investigate the convective heat transfer of water-based CuO nanofluids flowing through a square cross-section duct under constant heat flux in the turbulent flow regime.

Design/methodology/approach

The numerical simulation is carried out at various Peclet numbers and particle concentrations (0.1, 0.2, 0.5, and 0.8 vol%). The finite volume formulation is used with the semi-implicit method for pressure-linked equations algorithm to solve the discretized equations derived from the partial nonlinear differential equations of the mathematical model.

Findings

The heat transfer coefficients and Nusselt numbers of CuO-water nanofluids increase with increases in the Peclet number as well as particle volume concentration. Also, enhancement of the heat transfer coefficient is much greater than that of the effective thermal conductivity at the same nanoparticle concentration.

Research limitations/implications

Simulation of nanofluids turbulent forced convection at very high Reynolds number is worth for further study.

Practical implications

The heat transfer rates through non-circular ducts are smaller than the circular tubes. Nevertheless, the pressure drop of the non-circular duct is less than that of the circular tube. This study clearly presents that the nanoparticles suspended in water enhance the convective heat transfer coefficient, despite low volume fraction between 0.1 and 0.8 percent. Adding nanoparticles to conventional fluids may enhance heat transfer performance through the non-circular ducts, leading to extensive practical applications in industries for the non-circular ducts.

Originality/value

Few papers have numerically studied convective heat transfer properties of nanofluids through non-circular ducts. The present numerical results show a good agreement with the published experimental data.

Details

Engineering Computations, vol. 33 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 10 August 2021

Zahra Sarbazi and Faramarz Hormozi

This study aims to numerically investigate the thermal-hydrodynamic performance of silicon oxide/water nanofluid laminar flow in the heat sink miniature channel with different fin…

Abstract

Purpose

This study aims to numerically investigate the thermal-hydrodynamic performance of silicon oxide/water nanofluid laminar flow in the heat sink miniature channel with different fin cross-sections. The effect of the fin cross-section including semi-circular, rectangular and quadrant in two directions of flat and curved, and channel substrate materials of steel, aluminum, copper and titanium were examined. Finally, the analysis of thermal and frictional entropy generation in different channels is performed.

Design/methodology/approach

According to the numerical results, the highest heat transfer coefficients belong to the rectangular, quadrant 2, quadrant 1 and semi-circular fins compared to the channel without fin is 38.65%, 29.94%, 27.45% and 17.1%, respectively. Also, the highest performance evaluation criteria belong to the rectangular and quadrant 2 fins, which have 1.35 and 1.29, respectively. Based on the thermal conductivity of the substrate material, the best material is copper. According to the results of entropy analysis, the reduction of thermal irreversibility of the channel with rectangular, quadrant 1, quadrant 2 and semi-circular compared to non-finned channel is equal to 72%, 57%, 63% and 48%, respectively.

Findings

The rectangular and quadrant 2 fins are the best fins and the copper substrate material is the best material to reduce the entropy generation.

Originality/value

The silicon oxide/water nanofluid flow in the heat sink miniature channel with various fin shapes and the curvature angle against the fluid flow was simulated to increase the heat transfer performance. The whole test section is simulated in three-dimensional. Different channel materials have been investigated to find the best channel substrate material.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 June 2019

Marjan Goodarzi, Iskander Tlili, Zhe Tian and Mohammad Reza Safaei

This study aims to model the nanofluid flow in microchannel heat sinks having the same length and hydraulic diameter but different cross-sections (circular, trapezoidal and…

Abstract

Purpose

This study aims to model the nanofluid flow in microchannel heat sinks having the same length and hydraulic diameter but different cross-sections (circular, trapezoidal and square).

Design/methodology/approach

The nanofluid is graphene nanoplatelets-silver/water, and the heat transfer in laminar flow was investigated. The range of coolant Reynolds number in this investigation was 200 ≤ Re ≤ 1000, and the concentrations of nano-sheets were from 0 to 0.1 vol. %.

Findings

Results show that higher temperature leads to smaller Nusselt number, pressure drop and pumping power, and increasing solid nano-sheet volume fraction results in an expected increase in heat transfer. However, the influence of temperature on the friction factor is insignificant. In addition, by increasing the Reynolds number, the values of pressure drop, pumping power and Nusselt number augments, but friction factor diminishes.

Research limitations/implications

Data extracted from a recent experimental work were used to obtain thermo-physical properties of nanofluids.

Originality/value

The effects of temperature, microchannel cross-section shape, the volume concentration of nanoparticles and Reynolds number on thermal and hydraulics behavior of the nanofluid were investigated. Results are presented in terms of velocity, Nusselt number, pressure drop, friction loss and pumping power in various conditions. Validation of the model against previous papers showed satisfactory agreement.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 July 2019

Muhammad Waqas

This paper aims to address stagnation point flow of cross nanofluid in frames of hydromagnetics. Flow analysis subjected to expanding-contracting cylinder is studied.

Abstract

Purpose

This paper aims to address stagnation point flow of cross nanofluid in frames of hydromagnetics. Flow analysis subjected to expanding-contracting cylinder is studied.

Design/methodology/approach

Nonlinear problems are computed by using bvp4c procedure.

Findings

Radius of curvature and temperature-dependent heat sink-source significantly affects heat-mass transport mechanisms for cylindrical surface.

Originality/value

No such analysis has yet been reported.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 January 2019

Gülbanu Şenay, Metin Kaya, Engin Gedik and Muhammet Kayfeci

The purpose of this study is to numerically investigate the heat transfer enhancement by using two different nanofluids flow throughout the square duct under a constant heat flux…

Abstract

Purpose

The purpose of this study is to numerically investigate the heat transfer enhancement by using two different nanofluids flow throughout the square duct under a constant heat flux (500 × 103 W/m2).

Design/methodology/approach

In numerical computations, ANSYS Fluent code based on the finite volume method was used to solve governing equations by iteratively. Water, Al2O3-water and TiO2-water nanofluids were used for different flow velocities changing 1 m/s to 8 m/s (i.e. Reynolds number varying from 3,000 to 100,000).

Findings

The results were compared with results published previously in the literature and close agreement was observed especially considering Dittus and Boelter correlation for water. It was found that from the obtained results, increasing flow velocity and volume fractions of nanoparticles has caused to increase Nu number for all cases. Besides, variations of pressure drop, Darcy friction factor are presented graphically and discussed in detail. The results are consistent with a deviation of 1.3 to 15 per cent with the results of other researchers.

Originality/value

The effects of the Re numbers and volume fractions of nanoparticles (0.01 ≤ Φ ≤ 0.04) on the heat transfer and fluid flow characteristics such as average Nu number, pressure drop (ΔP) and Darcy friction factor (f) were investigated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 September 2020

Natalia C. Roşca, Alin V. Roşca, Amin Jafarimoghaddam and Ioan Pop

The purpose of this paper is to study the laminar boundary layer cross flow and heat transfer on a rotational stagnation-point flow over either a stretching or shrinking porous…

Abstract

Purpose

The purpose of this paper is to study the laminar boundary layer cross flow and heat transfer on a rotational stagnation-point flow over either a stretching or shrinking porous wall submerged in hybrid nanofluids. The involved boundary layers are of stream-wise type with stretching/shrinking process along the surface.

Design/methodology/approach

Using appropriate similarity variables the partial differential equations are reduced to ordinary (similarity) differential equations. The reduced system of equations is solved analytically (by high-order perturbed field propagation for small to moderate stretching/shrinking parameter and low-order perturbation for large stretching/shrinking parameter) and numerically using the function bvp4c from MATLAB for different values of the governing parameters.

Findings

It was found that the basic similarity equations admit dual (upper and lower branch) solutions for both stretching/shrinking surfaces. Moreover, performing a linear stability analysis, it was confirmed that the upper branch solution is realistic (physically realizable), while the lower branch solution is not physically realizable in practice. These dual solutions will be studied in the present paper.

Originality/value

The authors believe that all numerical results are new and original and have not been published before for the present problem.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 November 2018

Esmaeil Jalali and Arash Karimipour

In this paper, the forced convection heat transfer of the nanofluid composed of water and AL2O3 nanoparticles is simulated in a two-dimensional horizontal microchannel by…

Abstract

Purpose

In this paper, the forced convection heat transfer of the nanofluid composed of water and AL2O3 nanoparticles is simulated in a two-dimensional horizontal microchannel by injecting the lower wall. The upper wall of the microchannel is 303 K at temperature TH. On the lower wall of the microchannel, there are three holes for flow injection. Other parts of the wall are insulated. In this paper, the effect of parameters such as Reynolds number, slip coefficient and volume fraction of nanoparticles is investigated.

Design/methodology/approach

The boundary condition of the slip velocity is considered on the upper and lower walls of the microchannel. In this work, the flow of nanofluid in the microchannel is considered to be slow, permanent and Newtonian. In the present study, the effect of injection through the microchannel wall on the slip velocity is examined for the first time.

Findings

The results are also presented as velocity profiles and Nusselt number diagrams. It was found that the Nusselt number increases with increasing the amount of slip coefficient of velocity and the weight percentage of solid nanoparticles. The rate of this increase is higher in the high values of the Reynolds number.

Originality/value

A novel paper concerned the simulation of cross-flow injection effects on the slip velocity and temperature domain of a nanofluid flow inside a microchannel.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 February 2021

Subhasree Dutta, Somnath Bhattacharyya and Ioan Pop

The purpose of this study is to analyze the heat transfer and flow enhancement of an Al2O3-water nanofluid filling an inclined channel whose lower wall is embedded with…

Abstract

Purpose

The purpose of this study is to analyze the heat transfer and flow enhancement of an Al2O3-water nanofluid filling an inclined channel whose lower wall is embedded with periodically placed discrete hydrophobic heat sources. Formation of a thin depletion layer of low viscosity over each hydrophobic heated patch leads to the velocity slip and temperature jump condition at the interface of the hydrophobic patch.

Design/methodology/approach

The mixed convection of the nanofluid is analysed based on the two-phase non-homogeneous model. The governing equations are solved numerically through a control volume approach. A periodic boundary condition is adopted along the longitudinal direction of the modulated channel. A velocity slip and temperature jump condition are imposed along with the hydrophobic heated stripes. The paper has validated the present non-homogeneous model with existing experimental and numerical results for particular cases. The impact of temperature jump condition and slip velocity on the flow and thermal field of the nanofluid in mixed convection is analysed for a wide range of governing parameters, namely, Reynolds number (50 ≤ Re ≤ 150), Grashof number ( 103Gr5×104), nanoparticle bulk volume fraction ( 0.01φb0.05), nanoparticle diameter ( 30dp60) and the angle of inclination ( 60°σ60°).

Findings

The presence of the thin depletion layer above the heated stripes reduces the heat transfer and augments the volume flow rate. Consideration of the nanofluid as a coolant enhances the rate of heat transfer, as well as the entropy generation and friction factor compared to the clear fluid. However, the rate of increment in heat transfer suppresses by a significant margin of the loss due to enhanced entropy generation and friction factor. Heat transfer performance of the channel diminishes as the channel inclination angle with the horizontal is increased. The paper has also compared the non-homogeneous model with the corresponding homogeneous model. In the non-homogeneous formulation, the nanoparticle distribution is directly affected by the slip conditions by virtue of the no-normal flux of nanoparticles on the slip planes. For this, the slip stripes augment the impact of nanoparticle volume fraction compared to the no-slip case.

Originality/value

This paper finds that the periodically arranged hydrophobic heat sources on the lower wall of the channel create a significant augmentation in the volume flow rate, which may be crucial to augment the transport process in mini- or micro-channels. This type of configuration has not been addressed in the existing literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 December 2020

Saima Batool, Muhammad Nawaz and Mohammed Kbiri Alaoui

This study presents a mathematical approach and model that can be useful to investigate the thermal performance of fluids with microstructures via hybrid nanoparticles in…

Abstract

Purpose

This study presents a mathematical approach and model that can be useful to investigate the thermal performance of fluids with microstructures via hybrid nanoparticles in conventional fluid. It has been found from the extensive literature survey that no study has been conducted to investigate buoyancy effects on the flow of Maxwell fluid comprised of hybrid microstructures and heat generation aspects through the non-Fourier heat flux model.

Design/methodology/approach

Non-Fourier heat flux model and non-Newtonian stress–strain rheology with momentum and thermal relaxation phenomena are used to model the transport of heat and momentum in viscoelastic fluid over convectively heated surface. The role of suspension of mono and hybrid nanostructures on an increase in the thermal efficiency of fluid is being used as a medium for transportation of heat energy. The governing mathematical problems with thermo-physical correlations are solved via shooting method.

Findings

It is noted from the simulations that rate of heat transfer is much faster in hybrid nanofluid as compare to simple nanofluid with the increasing heat-generation coefficient. Additionally, an increment in the thermal relaxation time leads to decrement in the reduced skin friction coefficient; however, strong behavior of Nusselt number is shown when thermal relaxation time becomes larger for hybrid nanofluid as well as simple nanofluid.

Originality/value

According to the literature survey, no investigation has been made on buoyancy effects of Maxwell fluid flow with hybrid microstructures and heat generation aspects through non-Fourier heat flux model. The authors confirm that this work is original, and it has neither been published elsewhere nor is it currently under consideration for publication elsewhere.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 504