Search results

1 – 10 of over 17000
Article
Publication date: 24 July 2019

Ting Qi, Haihong Zhu, Xiaoyan Zeng and Jie Yin

It is a crucial issue to eliminate cracks for selective laser melting (SLM) 7xxx series aluminum alloy. This paper aims to study the effect of silicon content on the cracking…

Abstract

Purpose

It is a crucial issue to eliminate cracks for selective laser melting (SLM) 7xxx series aluminum alloy. This paper aims to study the effect of silicon content on the cracking behavior and the mechanism of eliminating crack of SLMed Al7050 alloy.

Design/methodology/approach

Six different silicon contents were added to the Al7050 powder. The crack density and crack count measuring from optical micrographs were utilized to judge the cracking susceptibility. The low melting phases analyzing from Jmatpro and the microstructure observing by EPMA and SEM were used to discuss the mechanism of eliminating the crack.

Findings

The cracking susceptibility of SLMed Al7050 alloy decreases with the increase of adding silicon content. When adding silicon, two new low-melting phases appeared: Mg2Si and Al5Cu2Mg8Si6. These low-melting phases offer much liquid feeding along the grain boundary and decrease the cracking susceptibility. Moreover, the grains are obviously refined after adding silicon. The fine grain can increase the total surface area of the grain boundary, which can reinforce the matrix and decrease the cracking susceptibility. High silicon content results in more low-melting phases and fine grains, which decreases the cracking susceptibility.

Originality/value

The investigation results can help to obtain crack-free SLMed Al7050 parts and deep knowledge on eliminating cracking mechanism of high-strength aluminum alloy fabricated by SLM.

Details

Rapid Prototyping Journal, vol. 25 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 9 May 2023

Kuleni Fekadu Yadeta, Sudath C. Siriwardane and Tesfaye Alemu Mohammed

Reliable estimations of the extent of corrosion and time required to reach specific safety limits are crucial for assessing the reliability of aging reinforced concrete (RC…

Abstract

Purpose

Reliable estimations of the extent of corrosion and time required to reach specific safety limits are crucial for assessing the reliability of aging reinforced concrete (RC) bridges. Engineers and decision-makers can use these figures to plan suitable inspection and maintenance operations.

Design/methodology/approach

Analytical, empirical and numerical approaches for estimating the service life of corroded RC structures were presented and compared. The concrete cover cracking times, which were predicted by the previously proposed analytical models, were compared with the experimentally obtained cracking times to identify the model/s for RC bridges. The shortcomings and limitations of the existing models are discussed.

Findings

The empirical models typically depend on the rate of corrosion, diameter of steel reinforcement and concrete cover depth and based on basic mathematical formula. In contrast, the analytical and numerical models contain the strength and stiffness properties of concrete as well as type of corrosion products and incorporate more complex mechanical factors. Four existing analytical models were analyzed and their performance was evaluated against existing experimental data in literature. All the considered analytical models were assumed thick-walled cylinder models. The maximum difference between observed cracking time from different test data and calculated cracking time using the developed models is 36.5%. The cracking times extend with increase in concrete cover and decrease with corrosion current density. The development of service life prediction models that considers factors such as heterogeneity of concrete, non-uniform corrosion along rebar, rust production rate and a more accurate representation of the corrosion accommodating region are some of the areas for further research.

Research limitations/implications

Outcome of this paper partially bridge the gap between theory and practice, as it is the basis to estimate the serviceability of corrosion-affected RC structures and to propose maintenance and repair strategies for the structures. For structural design and evaluation, the crack-width criterion is the greatest practical importance, and structural engineers, operators and asset managers should pay close attention to it. Additionally, repair costs for corrosion-induced serviceability failures, particularly concrete cracking and spalling, are significantly higher than those for strength failures. Therefore, to optimize the maintenance cost of RC structures, it is essential to precisely forecast the serviceability of corrosion-affected concrete structures. The lifespan of RC structures may be extended by timely repairs. This helps stake holders to manage the resources.

Practical implications

In order to improve modeling of corrosion-induced cracking, important areas for future research were identified. Heterogeneity properties of concrete, concept of porous zone (accommodation effect of pores should be quantified), actual corrosion morphology (non-uniform corrosion along the length of rebar), interaction between sustain load and corrosions were not considered in existing models. Therefore, this work suggested for further researches should consider them as input and develop models which have best prediction capacity.

Social implications

This work has positive impact on society and will not affect the quality of life. Predicting service life of structures is necessary for maintenance and repair strategy plans. Optimizing maintenance strategy is used to extend asset life, reduce asset failures, minimize repair cost, and improve health and safety for society.

Originality/value

The degree of accuracy and applicability of the existing service life prediction models used for RC were assessed by comparing the predicted cracking times with the experimentally obtained times reported in the literature. The shortcomings of the models were identified and areas where further research is required are recommended.

Details

International Journal of Structural Integrity, vol. 14 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 6 June 2023

Hua Huang, Yaqiong Fan, Huiyang Huang and Runlan Guo

As an efficient self-healing intelligent material, the encapsulation-based self-healing resin mineral composite (SHC) has a broad application prospect.

Abstract

Purpose

As an efficient self-healing intelligent material, the encapsulation-based self-healing resin mineral composite (SHC) has a broad application prospect.

Design/methodology/approach

Aiming at the cracking performance of SHC, the dynamic load condition is employed to replace the traditional static load condition, the initial damage of the material is considered and the triggered cracking process and influencing factors of SHC are analyzed based on the extended finite element method (XFEM). In addition, the mechanism of matrix cracking and microcapsule triggered cracking process is explained from the microscopic point of view, and the cracking performance conditions of SHC are studied. On this basis, the response surface regression analysis method is used to obtain a second-order polynomial model of the microcapsule crack initiation stress, the interface bonding strength and the matching relationship between elastic modulus. Therefore, the model could be used to predict the cracking performance parameters of the microcapsule.

Findings

The interfacial bonding strength has an essential effect on the triggered cracking of the microcapsule. In order to ensure that the microcapsule can be triggered cracking normally, the design strength should meet the following relationship, that is crack initiation stress of microcapsule wall < crack initiation stress of matrix < interface bonding strength. Moreover, the matching relationship between elastic modulus has a significant influence on the triggered cracking of the microcapsule.

Originality/value

The results provide a theoretical basis for further oriented designing of the cracking performance of microcapsules.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 20 December 2023

Lifeng Wang, Jiwei Bi, Long Liu and Ziwang Xiao

This paper presents the experimental and numerical results of the bending properties of low-height prestressed T-beams. The purpose is to study the bearing capacity, failure state…

Abstract

Purpose

This paper presents the experimental and numerical results of the bending properties of low-height prestressed T-beams. The purpose is to study the bearing capacity, failure state and strain distribution of low-height prestressed T-beams.

Design/methodology/approach

First, two 13 m-long full-size test beams were fabricated with different positions of prestressed steel bundles in the span. The load–deflection curves and failure patterns of each test beam were obtained through static load tests. Secondly, the test data were used to validate the finite element model developed to simulate the flexural behavior of low-height prestressed T-beams. Finally, the influence of different parameters (the number of prestressed steel bundles, initial prestress and concrete strength grade) on the flexural performance of the test beams is studied by using a finite element model.

Findings

The test results show that when the distance of the prestressed steel beam from the bottom height of the test beam increases from 40 to 120 mm, the cracking load of the test beam decreases from 550.00 to 450.00 kN, reducing by 18.18%, and the ultimate load decreases from 1338.15 to 1227.66 kN, reducing by 8.26%, therefore, the increase of the height of the prestressed steel beam reduces the bearing capacity of the test beam. The numerical simulation results show that when the number of steel bundles increases from 2 to 9, the cracking load increases by 183.60%, the yield load increases by 117.71% and the ultimate load increases by 132.95%. Therefore, the increase in the number of prestressed steel bundles can increase the cracking load, yield load and ultimate load of the test beam. When the initial prestress is from 695 to 1,395 MPa, the cracking load increases by 69.20%, the yield load of the bottom reinforcement increases by 31.61% and the ultimate load increases by 3.97%. Therefore, increasing the initial prestress can increase the cracking load and yield load of the test beam, but it has little effect on the ultimate load. The strength grade of concrete increases from C30 to C80, the cracking load is about 455.00 kN, the yield load is about 850.00 kN and the ultimate load is increased by 4.90%. Therefore, the improvement in concrete strength grade has little influence on the bearing capacity of the test beam.

Originality/value

Based on the experimental study, the bearing capacity of low-height prestressed T-beams with different prestressed steel beam heights is calculated by finite element simulation, and the influence of different parameters on the bearing capacity is discussed. This method not only ensures the accuracy of bearing capacity assessment, but also does not require a large number of samples and has a certain economy. The study of prestressed low-height T-beams is of great significance for understanding the principle and application of prestressed technology. Research on the mechanical behavior and performance of low-height prestressed T beams can provide a scientific basis and technical support for the design and construction of prestressed concrete structures. In addition, the study of prestressed low-height T-beams can also provide a reference for the optimization design and construction of other structural types.

Details

International Journal of Structural Integrity, vol. 15 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 5 March 2018

Wei Zhang, Beibing Dai, Zhen Liu and Cuiying Zhou

The cracking of a reinforced concrete lining has a significant influence on the safety and leakage of pressure tunnels. This study aims to develop, validate and apply a numerical…

Abstract

Purpose

The cracking of a reinforced concrete lining has a significant influence on the safety and leakage of pressure tunnels. This study aims to develop, validate and apply a numerical algorithm to simulate the lining cracking process during the water-filling period of pressure tunnels.

Design/methodology/approach

Cracks are preset in all lining elements, and the Mohr−Coulomb criterion with a tension cutoff is used in determining whether a preset crack becomes a real crack. The effects of several important factors such as the water pressure on crack surfaces (WPCS) and the heterogeneity of the lining tensile strength are also considered simultaneously.

Findings

The crack number and width increase gradually with the increase in internal water pressure. However, when the pressure reaches a threshold value, the increase in crack width becomes ambiguous. After the lining cracks, the lining displacement distribution is discontinuous and steel bar stress is not uniform. The measured stress of the steel bar is greatly determined by the position of the stress gauge. The WPCS has a significant influence on the lining cracking mechanism and should not be neglected.

Originality/value

A reliable algorithm for simulating the lining cracking process is presented by which the crack number and width can be determined directly. The numerical results provide an insight into the development law of lining cracks and show that the WPCS significantly affects the cracking mechanism.

Details

Engineering Computations, vol. 35 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 1999

W.L. Yao and Ming C. Leu

This paper presents a numerical and experimental investigation of ceramic shell cracking during the burnout process in investment casting with internally webbed laser…

1394

Abstract

This paper presents a numerical and experimental investigation of ceramic shell cracking during the burnout process in investment casting with internally webbed laser stereolithography patterns. Considered are the cracking temperature of the ceramic shell, the buckling temperature of the web link, and the glass transition temperature of the epoxy resin. Our hypothesis is that shell cracking will occur if the ceramic rupture temperature is lower than the temperature of glass transition and the temperature of web buckling. This hypothesis is validated by a good agreement we obtained between experimental observations and numerical simulations. It is found that the shell cracking and web link buckling are strongly related to the cross‐sectional dimensions and span length of the web structure and the shell thickness, and that shell cracking can be prevented by buckling of the epoxy webbed pattern in early stages of the burnout process.

Details

Rapid Prototyping Journal, vol. 5 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 June 2015

Luke N. Carter, Khamis Essa and Moataz M Attallah

The purpose of this paper is to optimise the selective laser melting (SLM) process parameters for CMSX486 to produce a “void free” (fully consolidated) material, whilst reducing…

1686

Abstract

Purpose

The purpose of this paper is to optimise the selective laser melting (SLM) process parameters for CMSX486 to produce a “void free” (fully consolidated) material, whilst reducing the cracking density to a minimum providing the best possible fabricated material for further post-processing. SLM of high temperature nickel base superalloys has had limited success due to the susceptibly of the material to solidification and reheat cracking.

Design/methodology/approach

Samples of CMSX486 were fabricated by SLM. Statistical design of experiments (DOE) using the response surface method was used to generate an experimental design and investigate the influence of the key process parameters (laser power, scan speed, scan spacing and island size). A stereological technique was used to quantify the internal defects within the material, providing two measured responses: cracking density and void per cent.

Findings

The analysis of variance (ANOVA) was used to determine the most significant process parameters and showed that laser power, scan speed and the interaction between the two are significant parameters when considering the cracking density. Laser power, scan speed, scan spacing and the interaction between power and speed, and speed and spacing were the significant factors when considering void per cent. The optimum setting of the process parameters that lead to minimum cracking density and void per cent was obtained. It was shown that the nominal energy density can be used to identify a threshold for the elimination of large voids; however, it does not correlate well to the formation of cracks within the material. To validate the statistical approach, samples were produced using the predicted optimum parameters in an attempt to validate the response surface model. The model showed good prediction of the void per cent; however, the cracking results showed a greater deviation from the predicted value.

Originality/value

This is the first ever study on SLM of CMSX486. The paper shows that provided that the process parameters are optimised, SLM has the potential to provide a low-cost route for the small batch production of high temperature aerospace components.

Details

Rapid Prototyping Journal, vol. 21 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 5 May 2015

Babruvahan Pandurang Ronge and Prashant Maruti Pawar

– This paper aims to focus on the stochastic analysis of composite rotor blades with matrix cracking in forward flight condition.

Abstract

Purpose

This paper aims to focus on the stochastic analysis of composite rotor blades with matrix cracking in forward flight condition.

Design/methodology/approach

The effect of matrix cracking and uncertainties are introduced to the aeroelastic analysis through the cross-sectional stiffness properties obtained using thin-walled beam formulation, which is based on a mixed force and a displacement method. Forward flight analysis is carried out using an aeroelastic analysis methodology developed for composite rotor blades based on the finite element method in space and time. The effects of matrix cracking are introduced through the changes in the extension, extension-bending and bending matrices of composites, whereas the effect of uncertainties are introduced through the stochastic properties obtained from previous experimental and analytical studies.

Findings

The stochastic behavior of helicopter hub loads, blade root forces and blade tip responses are obtained for different crack densities. Further, assuming the behavior of progressive damage in same beam is measurable as compared to its undamaged state, the stochastic behaviors of delta values of various measurements are studied. From the stochastic analysis of forward flight behavior of composite rotor blades at various matrix cracking levels, it is observed that the histograms of these behaviors get mixed due to uncertainties. This analysis brings out the parameters which can be used for effective prediction of matrix cracking level under various uncertainties.

Practical implications

The behavior is useful for the development of a realistic online matrix crack prediction system.

Originality/value

Instead of introducing the white noise in the simulated data for testing the robustness of damage prediction algorithm, a systematic approach is developed to model uncertainties along with damage in forward flight simulation.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 87 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 November 1990

Z.A. Foroulis

This paper presents a brief summary of the stress corrosion cracking experience of carbon steel in amine acid gas scrubbing units. In addition, it discusses the current views of…

Abstract

This paper presents a brief summary of the stress corrosion cracking experience of carbon steel in amine acid gas scrubbing units. In addition, it discusses the current views of the most probable mechanism of cracking of carbon steel equipment in amine acid gas scrubbing units and the probable role of the nature of the amine molecule.

Details

Anti-Corrosion Methods and Materials, vol. 37 no. 11
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 26 April 2024

Xinmin Zhang, Jiqing Luo, Zhenhua Dong and Linsong Jiang

The long-span continuous rigid-frame bridges are commonly constructed by the section-by-section symmetrical balance suspension casting method. The deflection of these bridges is…

Abstract

Purpose

The long-span continuous rigid-frame bridges are commonly constructed by the section-by-section symmetrical balance suspension casting method. The deflection of these bridges is increasing over time. Wet joints are a typical construction feature of continuous rigid-frame bridges and will affect their integrity. To investigate the sensitivity of shear surface quality on the mechanical properties of long-span prestressed continuous rigid-frame bridges, a large serviced bridge is selected for analysis.

Design/methodology/approach

Its shear surface is examined and classified using the damage measuring method, and four levels are determined statistically based on the core sample integrity, cracking length and cracking depth. Based on the shear-friction theory of the shear surface, a 3D solid element-based finite element model of the selected bridge is established, taking into account factors such as damage location, damage number and damage of the shear surface. The simulated results on the stress distribution of the local segment, the shear surface opening and the beam deflection are extracted and analyzed.

Findings

The findings indicate that the main factors affecting the ultimate shear stress and shear strength of the shear surface are size, shear reinforcements, normal stress and friction performance of the shear surface. The connection strength of a single or a few shear surfaces decreases but with little effect on the local stress. Cracking and opening mainly occur at the 1/4 span. Compared with the rigid “Tie” connection, the mid-span deflection of the main span increases by 25.03% and the relative deflection of the section near the shear surface increases by 99.89%. However, when there are penetrating cracks and openings in the shear surface at the 1/2 span, compared with the 1/4 span position, the mid-span deflection of the main span and the relative deflection of the cross-section increase by 4.50%. The deflection of the main span increases with the failure of the shear surface.

Originality/value

These conclusions can guide the analysis of deflection development in long-span prestressed continuous rigid-frame bridges.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of over 17000