Search results

1 – 8 of 8
Article
Publication date: 2 January 2018

P. Pandiyan, G. Uma and M. Umapathy

This paper aims to present a design and simulation of electrostatic nanoelectromechanical system (NEMS)-based logic gates using laterally actuated cantilever with double-electrode…

Abstract

Purpose

This paper aims to present a design and simulation of electrostatic nanoelectromechanical system (NEMS)-based logic gates using laterally actuated cantilever with double-electrode structure that can implement logic functions, similar to logic devices that are made of solid-state transistors which operates at 5 V.

Design/methodology/approach

The analytical modeling of NEMS switch is carried out for finding the pull-in and pull-out voltage based on Euler-Bernoulli’s beam theory, and its numerical simulation is performed using finite element method computer-aided design tool COVENTORWARE.

Findings

This paper reports analytical and numerical simulation of basic NEMS switch to realize the logic gates. The proposed logic gate operates on 5 V which suits well with conventional complementary metal oxide semiconductor (CMOS) logic which in turn reduces the power consumption of the device.

Originality/value

The proposed logic gates use a single bit NEMS switch per logic instead of using 6-14 individual transistors as in CMOS. One exclusive feature of this proposed logic gates is that the basic NEMS switch is structurally modified to function as specific logic gates depending upon the given inputs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 March 2018

Pandiyan P., Uma G. and Umapathy M.

The purpose of this paper is to design an out-of-plane micro electro-thermal-compliant actuator based logic gates which work analogously to complementary metal oxide semiconductor…

Abstract

Purpose

The purpose of this paper is to design an out-of-plane micro electro-thermal-compliant actuator based logic gates which work analogously to complementary metal oxide semiconductor (CMOS) based logic gates. The proposed logic gates used a single-bit mechanical micro ETC actuator per logic instead of using 6-14 individual transistors as in CMOS.

Design/methodology/approach

A complete analytical modelling is performed on a single ETC vertical actuator, and a relation between the applied voltage and the out-of-plane deflection is derived. Its coupled electro-thermo-mechanical analysis is carried out using micro electro mechanical system (MEMS) CAD tool CoventorWare to illustrate its performance.

Findings

This paper reports analytical and numerical simulation of basic MEMS ETC actuator-based logic gates. The proposed logic gate operates on 5 V, which suits well with conventional CMOS logic, which in turn reduces the power consumption of the device.

Originality/value

The proposed logic gates uses a single-bit MEMS ETC actuator per logic instead of using more transistors as in CMOS. The unique feature of this proposed logic gates is that the basic mechanical ETC actuator is customized in its structure to function as specific logic gates depending upon the given inputs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 January 2019

Jeremy Scerri, Barnaby Portelli, Ivan Grech, Edward Gatt and Owen Casha

The purpose of this paper is to investigate the feasibility of using micro electromechanical systems (MEMS) to convert a binary phase shift keying (BPSK) signal to a simpler…

Abstract

Purpose

The purpose of this paper is to investigate the feasibility of using micro electromechanical systems (MEMS) to convert a binary phase shift keying (BPSK) signal to a simpler amplitude shift keying (ASK) scheme.

Design/methodology/approach

The prototype is designed within the SOIMUMPs® fabrication process constraints. The fabrication constraints imposed geometric limitations on what could be tested. These constraints were used to build a mathematical model, which in turn was used to optimize the response using MATLAB®. The optimized design was tested using finite element analysis with CoventorWare®, and finally lab tests on the fabricated device were performed to confirm theoretical predictions.

Findings

Theoretical predictions compared well with lab measurements on a prototype device measuring 2.9 mm2. The prototype was tested with a carrier frequency of 174 kHz at a BPSK data rate of 3 kHz and carrier amplitude of 6 V. With these parameters, ASK modulation indices of 0.96 and 0.94 were measured at the two output sensors.

Originality/value

This study provides a MEMS solution for BPSK to ASK conversion. The study also identifies what limits betterment of the modulation index and data rate. Such a device has potential application in wireless sensor network (WSN) nodes that have energy harvesters and sensors that are also built in MEMS. Being a MEMS device, it can facilitate integration in such WSN nodes and, hence, potentially reduce size and costs.

Details

Microelectronics International, vol. 36 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 13 May 2014

Nayyer Abbas Zaidi and Shafaat Ahmed Bazaz

– The purpose of this paper is to present the design of a microgripper system that comprises a dual jaw actuation mechanism with contact sensing.

Abstract

Purpose

The purpose of this paper is to present the design of a microgripper system that comprises a dual jaw actuation mechanism with contact sensing.

Design/methodology/approach

Interdigitated lateral comb-drive-based electrostatic actuator is used to move the gripper arms. Simultaneous contact sensing of the gripper jaws has been achieved through transverse comb-based capacitive sensor. The fabricated microgripper produces a displacement of 16 μm at gripper jaws for an applied actuation voltage of 45 V.

Findings

It is observed that the microgripper fails to operate for the maximum performance limits (70 μm jaws displacement) and produces uncontrolled force at the tip of the jaws > 45 V.

Originality/value

A novel behavioral model of the microgripper system is proposed using the fabricated dimensions of the system to carry out a detailed analysis to understand the cause of this failure. The failure analysis shows that the microgripper system failed to operate in its designed limits due to the presence of side instability in the designed combs structure. Our proposed failure model helps in redesigning the actuator to ensure its operation above 45 V so that the gripper jaw can be displaced to its maximum limit of 70 μm and also result in the increase of the controlled force from 250 to 303 μN at the microgripper jaws.

Details

Industrial Robot: An International Journal, vol. 41 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 17 August 2021

Muhammad Ahmad Raza Tahir, Muhammad Mubasher Saleem, Syed Ali Raza Bukhari, Amir Hamza and Rana Iqtidar Shakoor

This paper aims to present an efficient design approach for the micro electromechanical systems (MEMS) accelerometers considering design parameters affecting the long-term…

Abstract

Purpose

This paper aims to present an efficient design approach for the micro electromechanical systems (MEMS) accelerometers considering design parameters affecting the long-term reliability of these inertial sensors in comparison to traditional iterative microfabrication and experimental characterization approach.

Design/methodology/approach

A dual-axis capacitive MEMS accelerometer design is presented considering the microfabrication process constraints of the foundry process. The performance of the MEMS accelerometer is analyzed through finite element method– based simulations considering main design parameters affecting the long-term reliability. The effect of microfabrication process induced residual stress, operating pressure variations in the range of 10 mTorr to atmospheric pressure, thermal variations in the operating temperature range of −40°C to 100°C and impulsive input acceleration at different input frequency values is presented in detail.

Findings

The effect of residual stress is negligible on performance of the MEMS accelerometer due to efficient design of mechanical suspension beams. The effect of operating temperature and pressure variations is negligible on energy loss factor. The thermal strain at high temperature causes the sensing plates to deform out of plane. The input dynamic acceleration range is 34 g at room temperature, which decreases with operating temperature variations. At low frequency input acceleration, the input acts as a quasi-static load, whereas at high frequency, it acts as a dynamic load for the MEMS accelerometer.

Originality/value

In comparison with the traditional MEMS accelerometer design approaches, the proposed design approach focuses on the analysis of critical design parameters that affect the long-term reliability of MEMS accelerometer.

Details

Microelectronics International, vol. 38 no. 4
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 March 2005

José Mireles

Owing to the technology growth, especially in Microsystems technology and Nanotechnology, new products will provide new ways to sense variables that are crucial for product…

1566

Abstract

Purpose

Owing to the technology growth, especially in Microsystems technology and Nanotechnology, new products will provide new ways to sense variables that are crucial for product improvement and system reliability. A big concern of the scientific community is the measurement of low level flow measurements, especially for the biomedical and/or systems on a chip approaches.Design/methodology/approach – A new flow meter concept design consists of a surface micromachined sensor having an optical high reflective mirror made of gold, which is attached to unique cantilever designs that bend due to the drag force of mass flow. The bending of the cantilevers produces the mirror to approach/depart from an optical fiber end‐tip. The reflective light to fiber is modulated using a Fabry‐Perot interferometry technique to determine the mirror separation to the fiber, which corresponds to the mass flow.Findings – The new concept design shows a big potential approach to measure low flow measurements for air, gas and liquids of low viscosity. The results of this concept, through finite element analysis, show that the material used to build the sensor, makes them excellent candidates for fabrication. The stresses of the materials and allowable (readable) bending are among the tolerances of such materials/construction‐design. The sensor is not affected by electromagnetic interference and does not require electrical currents to sense, i.e. it is perfectly suited for biomedical and low mass‐flow sensing such as lab‐on‐chip applications.Originality/value – Among all approaches to sense low flow measurements, most of them need either “big” turbine approaches (dimensions over 1 cm diameter), or the need of an electrical approach needed in the end measurement sensor. This work proposes a non‐electrical approach.

Details

Sensor Review, vol. 25 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 3 May 2016

Daniela Diaz-Alonso, Mario Moreno-Moreno, Carlos Zuñiga, Joel Molina, Wilfrido Calleja, Juan Carlos Cisneros, Luis Niño de Rivera, Volodymir Ponomaryov, Felix Gil, Angel Guillen and Efrain Rubio

This paper aims to purpose the new design and fabrication scheme of Touch Mode Capacitive Pressure Sensor (TMCPS), which can be used in a wireless integrated resistor, inductor…

Abstract

Purpose

This paper aims to purpose the new design and fabrication scheme of Touch Mode Capacitive Pressure Sensor (TMCPS), which can be used in a wireless integrated resistor, inductor and capacitor circuit for monitoring pressure in biomedical applications.

Design/methodology/approach

This study focuses on the design, simulation and fabrication of dynamic capacitors, based on surface micromachining using polysilicon or aluminum films as the top electrode, both structural materials are capped with a 1.5 μm-thick polyimide film.

Findings

The design of microstructures using a composite model fits perfectly the preset mechanical behavior. After the full fabrication, the dynamic capacitors show complete mechanical flexibility and stability.

Originality/value

The novelty of the method presented in this study includes two important aspects: first, the capacitors are designed as a planar cavity within a rigid frame, where two walls contain channels which allow for the etching of the sacrificial material. Second, the electromechanical structures are designed using a composite model that includes a polyimide film capping for a precise pressure sensing, which also protects the internal cavity and, at the same time, provides full biocompatibility.

Details

Microelectronics International, vol. 33 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Content available
Article
Publication date: 1 December 2002

Jon Rigelsford

39

Abstract

Details

Sensor Review, vol. 22 no. 4
Type: Research Article
ISSN: 0260-2288

1 – 8 of 8