Search results

1 – 5 of 5
Article
Publication date: 2 October 2017

S. Saha Ray

The purpose of this paper is to consider the time-splitting Fourier spectral (TSFS) method to solve the fractional coupled Klein–Gordon–Schrödinger (K-G-S) equations. A…

Abstract

Purpose

The purpose of this paper is to consider the time-splitting Fourier spectral (TSFS) method to solve the fractional coupled Klein–Gordon–Schrödinger (K-G-S) equations. A time-splitting spectral approach is applied for discretizing the Schrödinger-like equation and along with that, a pseudospectral discretization has been accurately utilized for the temporal derivatives in the Klein–Gordon-like equation. Furthermore, the time-splitting scheme is proved to be unconditionally stable. Numerical experiments guarantee high accuracy of the TSFS scheme for the K-G-S equations. Here, the derivative of fractional order is taken in the Riesz sense.

Design/methodology/approach

The focus of this paper is to study the Riesz fractional coupled K-G-S equations using the TSFS method. This method is dependent on evaluating the solution to the given problem in small steps, and treating the nonlinear and linear steps separately. The nonlinear step is made in the time domain, while the linear step is made in the frequency domain, which necessitates the use of Fourier transform back and forth. It is a very effective, powerful and efficient method to solve the nonlinear differential equations, as in previous works (Bao et al., 2002; Bao and Yang, 2007; Muslu and Erbay, 2003; Borluk et al., 2007), the initial and boundary-value problem is decomposed into linear and nonlinear subproblems. Summarizing the technique of the TSFS method, it can be stated that first the Schrödinger-like equation is solved in two splitting steps. Then, the Klein–Gordon-like equation is solved by discretizing the spatial derivatives by means of the pseudospectral method.

Findings

The utilized method is found to be very efficient and accurate. Moreover, the time-splitting spectral scheme is found to be unconditionally stable. By means of thorough study, it is found that the spectral method is time-reversible, is gauge-invariant and also conserves the total charge. Moreover, the results have been graphically presented to exhibit the accuracy of the proposed methods. Apart from that, the numerical solutions have been also compared with the exact solutions. Numerical experiments establish that the proposed technique manifests high accuracy and efficiency.

Originality/value

To the authors’ best knowledge, the Riesz fractional coupled K-G-S equations have been for the first time solved by using the TSFS method.

Details

Engineering Computations, vol. 34 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 December 2020

Ömer Oruç

The purpose of this paper is to obtain accurate numerical solutions of two-dimensional (2-D) and 3-dimensional (3-D) Klein–Gordon–Schrödinger (KGS) equations.

Abstract

Purpose

The purpose of this paper is to obtain accurate numerical solutions of two-dimensional (2-D) and 3-dimensional (3-D) Klein–Gordon–Schrödinger (KGS) equations.

Design/methodology/approach

The use of linear barycentric interpolation differentiation matrices facilitates the computation of numerical solutions both in 2-D and 3-D space within reasonable central processing unit times.

Findings

Numerical simulations corroborate the efficiency and accuracy of the proposed method.

Originality/value

Linear barycentric interpolation method is applied to 2-D and 3-D KGS equations for the first time, and good results are obtained.

Content available

Abstract

Details

Kybernetes, vol. 41 no. 7/8
Type: Research Article
ISSN: 0368-492X

Article
Publication date: 26 August 2014

Anjali Verma, Ram Jiwari and Satish Kumar

The purpose of this paper is to propose a numerical scheme based on forward finite difference, quasi-linearisation process and polynomial differential quadrature method to find…

Abstract

Purpose

The purpose of this paper is to propose a numerical scheme based on forward finite difference, quasi-linearisation process and polynomial differential quadrature method to find the numerical solutions of nonlinear Klein-Gordon equation with Dirichlet and Neumann boundary condition.

Design/methodology/approach

In first step, time derivative is discretised by forward difference method. Then, quasi-linearisation process is used to tackle the non-linearity in the equation. Finally, fully discretisation by differential quadrature method (DQM) leads to a system of linear equations which is solved by Gauss-elimination method.

Findings

The accuracy of the proposed method is demonstrated by several test examples. The numerical results are found to be in good agreement with the exact solutions and the numerical solutions exist in literature. The proposed scheme can be expended for multidimensional problems.

Originality/value

The main advantage of the present scheme is that the scheme gives very accurate and similar results to the exact solutions by choosing less number of grid points. Secondly, the scheme gives better accuracy than (Dehghan and Shokri, 2009; Pekmen and Tezer-Sezgin, 2012) by choosing less number of grid points and big time step length. Also, the scheme can be extended for multidimensional problems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 July 2023

Umer Saeed

The purpose of the present work is to introduce a wavelet method for the solution of linear and nonlinear psi-Caputo fractional initial and boundary value problem.

Abstract

Purpose

The purpose of the present work is to introduce a wavelet method for the solution of linear and nonlinear psi-Caputo fractional initial and boundary value problem.

Design/methodology/approach

The authors have introduced the new generalized operational matrices for the psi-CAS (Cosine and Sine) wavelets, and these matrices are successfully utilized for the solution of linear and nonlinear psi-Caputo fractional initial and boundary value problem. For the nonlinear problems, the authors merge the present method with the quasilinearization technique.

Findings

The authors have drived the orthogonality condition for the psi-CAS wavelets. The authors have derived and constructed the psi-CAS wavelets matrix, psi-CAS wavelets operational matrix of psi-fractional order integral and psi-CAS wavelets operational matrix of psi-fractional order integration for psi-fractional boundary value problem. These matrices are successfully utilized for the solutions of psi-Caputo fractional differential equations. The purpose of these operational matrices is to make the calculations faster. Furthermore, the authors have derived the convergence analysis of the method. The procedure of implementation for the proposed method is also given. For the accuracy and applicability of the method, the authors implemented the method on some linear and nonlinear psi-Caputo fractional initial and boundary value problems and compare the obtained results with exact solutions.

Originality/value

Since psi-Caputo fractional differential equation is a new and emerging field, many engineers can utilize the present technique for the numerical simulations of their linear/non-linear psi-Caputo fractional differential models. To the best of the authors’ knowledge, the present work has never been introduced and implemented for psi-Caputo fractional differential equations.

Details

Engineering Computations, vol. 40 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 5 of 5