Search results

1 – 8 of 8
Article
Publication date: 1 February 2024

Vishal Singh and Arvind K. Rajput

The present paper aims to analyse the synergistic effect of pocket orientation and piezo-viscous-polar (PVP) lubrication on the performance of multi-recessed hybrid journal…

Abstract

Purpose

The present paper aims to analyse the synergistic effect of pocket orientation and piezo-viscous-polar (PVP) lubrication on the performance of multi-recessed hybrid journal bearing (MHJB) system.

Design/methodology/approach

To simulate the behaviour of PVP lubricant in clearance space of the MHJB system, the modified form of Reynolds equation is numerically solved by using finite element method. Galerkin’s method is used to obtain the weak form of the governing equation. The system equation is solved by Gauss–Seidal iterative method to compute the unknown values of nodal oil film pressure. Subsequently, performance characteristics of bearing system are computed.

Findings

The simulated results reveal that the location of pressurised lubricant inlets significantly affects the oil film pressure distribution and may cause a significant effect on the characteristics of bearing system. Further, the use of PVP lubricant may significantly enhances the performance of the bearing system, namely.

Originality/value

The present work examines the influence of pocket orientation with respect to loading direction on the characteristics of PVP fluid lubricated MHJB system and provides vital information regarding the design of journal bearing system.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2023-0241/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 15 January 2024

F.D. Ayegbusi and A.S. Idowu

The purpose of this study is to investigate the effects of entropy generation of some embedded thermophysical properties on heat and mass transfer of pulsatile flow of…

Abstract

Purpose

The purpose of this study is to investigate the effects of entropy generation of some embedded thermophysical properties on heat and mass transfer of pulsatile flow of non-Newtonian nanofluid flows between two porous parallel plates in the presence of Lorentz force are taken into account in this research.

Design/methodology/approach

The governing partial differential equations (PDEs) were nondimensionalized using suitable nondimensional quantities to transform the PDEs into a system of coupled nonlinear PDEs. The resulting equations are solved using the spectral relaxation method due to the effectiveness and accuracy of the method. The obtained velocity and temperature profiles are used to compute the entropy generation rate and Bejan number. The influence of various flow parameters on the velocity, temperature, entropy generation rate and Bejan number are discussed graphically.

Findings

The results indicate that the energy losses can be minimized in the system by choosing appropriate values for pertinent parameters; when thermal conductivity is increasing, this leads to the depreciation of entropy generation, and while this increment in thermal conductivity appreciates the Bejan number, the Eckert number on entropy generation and Bejan number, the graph shows that each time of increase in Eckert will lead to rising of entropy generation while this increase shows a reduction in Bejan number. To shed more light, these results were further demonstrated graphically. The current research was very well supported by prior literature works.

Originality/value

All results are presented graphically, and the results in this article are anticipated to be helpful in the area of engineering.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 26 March 2024

U.S. Mahabaleshwar, Mahesh Rudraiah, Huang Huang and Bengt Ake Sunden

The purpose of this study is to analyze the impact of inclined magnetohydrodynamics (MHD) and thermal radiation on the flow of a ternary micropolar nanofluid on a sheet that is…

Abstract

Purpose

The purpose of this study is to analyze the impact of inclined magnetohydrodynamics (MHD) and thermal radiation on the flow of a ternary micropolar nanofluid on a sheet that is expanding and contracting while applying mass transpiration and velocity slip conditions to the flow. The nanofluid, which is composed of Au, Ag and Cu nanoparticles dispersed in water as the base fluid, possesses critical properties for increasing the heat transfer rate and is frequently used in manufacturing and industrial establishments.

Design/methodology/approach

The set of governing nonlinear partial differential equations is transformed into a set of nonlinear ordinary differential equations. The outcome of this differential equation is solved and obtained the closed-form solution and energy equation in the form of hypergeometric functions.

Findings

The velocity, micro-rotation and temperature field are investigated versus a parametric variation. The physical domains of mass suction or injection and micropolar characteristics play an important role in specifying the presence, singleness and multiplanes of exact solutions. In addition, many nondimensional characteristics of the profiles of temperature, angular velocity and velocity profiles are graphically shown with substantial consequences. Furthermore, adding nanoparticles increases the heat transfer rate of the fluid used in manufacturing and industrial establishments. The current findings may be used for better oil recovery procedures, smart materials such as magnetorheological fluids, targeted medicine administration and increased heat transmission. Concerning environmental cleanup, nanomaterial fabrication and biomedical devices, demonstrate their potential influence in a variety of disciplines.

Originality/value

The originality of this paper is to analyze the impact of inclined MHD at an angle with the ternary nanofluid on a micropolar fluid over an expanding and contracting sheet with thermal radiation effect.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 October 2023

Omar Imad Shukri Windi and Ali Sadik Gafer Qanber

The purpose of this study is to extract the response of the simultaneous low-velocity impact of multiple impactors on a porous functionally graded (FG) aluminum plate.

Abstract

Purpose

The purpose of this study is to extract the response of the simultaneous low-velocity impact of multiple impactors on a porous functionally graded (FG) aluminum plate.

Design/methodology/approach

To design a porous FG structure, a series of functions are applied using the porosity coefficient, and mechanical properties including Young’s modulus, shear modulus and the density of the porous structure are presented as a function of the axis placed in the direction of the plate thickness. The first-order shear deformation theory of the plate is used. To simulate the contact process between each impactor and the plate, a nonlinear Hertz contact force is considered for that impactor independently.

Findings

ABAQUS finite element software is used for the verification process of the theorical equations. The effects of porous function type, radius and initial velocity of impactor are investigated for the simultaneous impact of five impactors on porous FG aluminum plate with a simply supported boundary condition. Histories of contact force and displacement of the impactor placed in the center of the beam are analyzed in detail with the changes of the mentioned parameters.

Originality/value

Due to the advantages of porous aluminum plate such as high energy absorption and low weight, such structures may be subjected to the simultaneous impact of multiple impactors, which is studied in this research.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 28 October 2022

Sheeba Juliet S., Vidhya M. and Govindarajan A.

This study aims to investigate the effect of externally applied magnetic force and heat transfer with a heat source/sink on the Couette flow with viscous dissipation in a…

Abstract

Purpose

This study aims to investigate the effect of externally applied magnetic force and heat transfer with a heat source/sink on the Couette flow with viscous dissipation in a horizontal rotating channel. The magnetic force is added to the governing equations. The effects of fluid flow parameters are observed under the applied magnetic force. In this system, the magnetic force is applied perpendicular to the plane of the fluid flow. In recent years, the magnetic field has renewed interest in aerospace technology. The physical and theoretical approach in the multidisciplinary field of magneto fluid dynamics (MFD) is applied in the field of aerospace vehicle design.

Design/methodology/approach

Authors use the perturbation method to solve and find the approximate solutions of differential equations. First, convert the partial differential equation to ordinary differential equation and calculate the approximate solutions in two cases. The first solution got by assuming heat generating in the fluid and the second one got when heat absorbing. After applying the external magnetic force, the effects of various fluid parameters velocity, temperature, skin friction coefficient and Nusselt number are found and discussed using tables and graphs.

Findings

It is found that the velocity of the fluid has decreased tendency when the rotation of the fluid and magnetic force on the fluid increases. The temperature of the fluid, Prandtl value and Eckert number increased when the heat source generated heat. When heat absorbs the heat, sink parameter increases and the temperature of the fluid decreases. Also, while heat absorbs, the temperature increases when the Prandtl value and Eckert number increase.

Originality/value

The skin friction coefficient on the surface increases, when the rotation parameter and the magnetic force parameter of the fluid increase. In the case of heat generating, the Nusselt number increased, while the Eckert number and Prandtl numbers increased. Also, the Nusselt number has larger values when the heat source parameter has near the constant temperature, and it has smaller values when the temperature varies. In the case of heat-absorbing, the Nusselt number decreased when the Eckert and Prandtl numbers increased. Also, the Nusselt number varies up and down while the heat absorbing parameter increases.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 4 April 2023

Chinedu Chinakwe, Adekunle Adelaja, Michael Akinseloyin and Olabode Thomas Olakoyejo

Inclination angle has been reported to have an enhancing effect on the thermal-hydraulic characteristics and entropy of some thermal systems. Therefore, this paper aims to…

Abstract

Purpose

Inclination angle has been reported to have an enhancing effect on the thermal-hydraulic characteristics and entropy of some thermal systems. Therefore, this paper aims to numerically investigate the effects of inclination angle, volume concentration and Reynolds number on the thermal and hydraulic characteristics and entropy generation rates of water-based Al2O3 nanofluids through a smooth circular aluminum pipe in a turbulent flow.

Design/methodology/approach

A constant heat flux of 2,000 Watts is applied to the circular surface of the tube. Reynolds number is varied between 4,000 and 20,000 for different volume concentrations of alumina nanoparticles of 0.5%, 1.0% and 2.0% for tube inclination angles of ±90o, ±60o, ±45o, ±30o and 0o, respectively. The simulation is performed in an ANSYS Fluent environment using the realizable kinetic energy–epsilon turbulent model.

Findings

Results show that +45o tube orientation possesses the largest thermal deviations of 0.006% for 0.5% and 1.0% vol. concentrations for Reynolds numbers 4,000 and 12,000. −45o gives a maximum pressure deviation of −0.06% for the same condition. The heat transfer coefficient and pressure drop give maximum deviations of −0.35% and −0.39%, respectively, for 2.0% vol. concentration for Reynolds number of 20,000 and angle ±90o. A 95%–99.8% and 95%–98% increase in the heat transfer and total entropy generation rates, respectively, is observed for 2.0% volume concentration as tube orientation changes from the horizontal position upward or downward.

Originality/value

Research investigating the effect of inclination angle on thermal-hydraulic performance and entropy generation rates in-tube turbulent flow of nanofluid is very scarce in the literature.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 March 2024

Yu-Ping Chen, Margaret Shaffer, Janice R.W. Joplin and Richard Posthuma

Drawing on the challenge–hindrance stressor framework and the “too-much-of-a-good-thing” principle, this study examined the curvilinear effects of two emic social challenge…

Abstract

Purpose

Drawing on the challenge–hindrance stressor framework and the “too-much-of-a-good-thing” principle, this study examined the curvilinear effects of two emic social challenge stressors (guanxi beliefs and participative decision-making (PDM)) and the moderating effect of an etic social hindrance stressor (perceived organizational politics) on Hong Kong and United States nurses’ job satisfaction.

Design/methodology/approach

A quantitative survey method was implemented, with the data provided by 355 Hong Kong nurses and 116 United States nurses. Structural equation modeling was used to examine the degree of measurement equivalence across Hong Kong and US nurses. The proposed model and the research questions were tested using nonlinear structural equation modeling analyses.

Findings

The results show that while guanxi beliefs only showed an inverted U-shaped relation on Hong Kong nurses’ job satisfaction, PDM had an inverted U-shaped relation with both Hong Kong and United States nurses’ job satisfaction. The authors also found that Hong Kong nurses experienced the highest job satisfaction when their guanxi beliefs and perceived organization politics were both high.

Research limitations/implications

The results add to the comprehension of the nuances of the often-held assumption of linearity in organizational sciences and support the speculation of social stressors-outcomes linkages.

Practical implications

Managers need to recognize that while the nurturing and development of effective relationships with employees via social interaction are important, managers also need to be aware that too much guanxi and PDM may lead employees to feel overwhelmed with expectations of reciprocity and reconciliation to such an extent that they suffer adverse outcomes and become dissatisfied with their jobs.

Originality/value

First, the authors found that influences of guanxi beliefs and PDM are not purely linear and that previous research may have neglected the curvilinear nature of their influences on job satisfaction. Second, the authors echo researchers’ call to consider an organization’s political context to fully understand employees’ attitudes and reactions toward social interactions at work. Third, the authors examine boundary conditions of curvilinear relationships to understand the delicate dynamics.

Details

Cross Cultural & Strategic Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2059-5794

Keywords

Article
Publication date: 7 November 2023

Ishfaq Ahmad, Rida Akbar and Muhammad Ali Javed

The concept of online shopping has been in vogue for the past two decades and is on the rise. Even developing countries like Pakistan are using electronic platforms to buy and…

Abstract

Purpose

The concept of online shopping has been in vogue for the past two decades and is on the rise. Even developing countries like Pakistan are using electronic platforms to buy and sell goods and services, and the trend has been increasing ever since the COVID-19 pandemic. Drawing on the expectancy-disconfirmation theory, this study aims to test the e-service quality (E-SQ) and e-customer satisfaction (ECS) linkage with the mediating roles of functional values (FVs) and hedonic values (HVs).

Design/methodology/approach

The data have been collected from 298 customers of AliExpress and Daraz e-commerce platforms and analyzed using covariance-based structural equation modeling (CB-SEM).

Findings

The results of the study showed a significant positive relationship between E-SQ and ECS and indirect linkage through FVs and HVs have also been established.

Practical implications

E-commerce platforms, particularly in Pakistan, should place a strong emphasis on FVs by providing accurate product details, user-friendly navigation, transparent pricing and streamlined transactions. Customers' trust and confidence will increase if they have a smooth and effective online purchasing experience. Customer satisfaction may be influenced by regular platform functionality and usability changes.

Originality/value

The use of functional and HVs is considered to be a novel factor in testing the relationship between E-SQ and ECS.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 8 of 8