Search results

21 – 30 of over 8000
Article
Publication date: 19 January 2023

Haymanot Enawgaw

The purpose of this paper is to give compiled information on previously applied cotton fabric surface modifications. The paper covered most of the modifications done on cotton

Abstract

Purpose

The purpose of this paper is to give compiled information on previously applied cotton fabric surface modifications. The paper covered most of the modifications done on cotton fabric to improve its properties or to add some functional properties. The paper presented mostly studied research works that brought a significant surface improvement on cotton fabric.

Design/methodology/approach

Different previous works on surface modifications of cotton fabrics such as pilling, wrinkle and microbial resistance, hydrophobicity, cationization, flame retardancy and UV-protection characteristics were studied and their methods of modification including the main findings are well reported in this paper.

Findings

Several modification treatments on surface modification of cotton fabrics indicated an improvement in the desired properties in which the modification is needed. For instance, the pilling tendency, wrinkling, microbial degradation and UV degradation drawbacks of cotton fabric can be overcome through different modification techniques.

Originality/value

To the best of the author’s knowledge, there are no compressive documents that covered all the portions presented in this review. The author tried to cover the surface modifications done to improve the main properties of cotton fabric.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 6 December 2022

Khaled Mostafa, Heba Ameen and Ahmed Medhat

The purpose of this paper is to generate nitrogen-containing groups in the cotton fabric surface via low-temperature nitrogen plasma as an eco-friendly physical/zero-effluent…

Abstract

Purpose

The purpose of this paper is to generate nitrogen-containing groups in the cotton fabric surface via low-temperature nitrogen plasma as an eco-friendly physical/zero-effluent process. This was done for rendering cotton dye-able with Acid Blue 284, which in fact does not have any direct affinity to fix on it.

Design/methodology/approach

Dyeing characteristics of the samples such as color strength (K/S), fastness properties to light, rubbing and perspiration and durability, as well as tensile strength, elongation at break, whiteness, weight loss and wettability in addition to zeta potential of the dyed samples, were determined and compared with untreated fabric. Confirmation and characterization of the plasma-treated samples via chemical modifications and zeta potential was also studied using Fourier transform infrared spectroscopy (FTIR) and Malvern Zetasizer instrumental analysis.

Findings

The obtained results of the plasma-treated fabric reflect the following findings: FTIR results indicate the formation of nitrogen-containing groups on cotton fabrics; notable enhancement in the fabric wettability, zeta potential to more positive values and improvement in the dyeability and overall fastness properties of treated cotton fabrics in comparison with untreated fabric; the tensile strength, elongation at break, whiteness and weight % of the plasma treated fabrics are lower than that untreated one; and the durability of the plasma treated fabric decreased with increasing the number of washing cycles.

Originality/value

The novelty addressed here is rendering cotton fabrics dye-able with acid dye via the creation of new cationic nitrogen-containing groups on their surface via nitrogen plasma treatment as an eco-friendly and efficient tool with a physical/zero-effluent process.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 28 July 2022

Ashis Mitra

Cotton fibre lots are graded and selected for yarn spinning based on their quality value which is a function of certain fibre properties. Cotton grading and selection has created…

Abstract

Purpose

Cotton fibre lots are graded and selected for yarn spinning based on their quality value which is a function of certain fibre properties. Cotton grading and selection has created a domain of emerging interest among the researchers. Several researchers have addressed the said issue using a few exponents of multi-criteria decision-making (MCDM) technique. The purpose of this study is to demonstrate a cotton selection problem using a recently developed measurement of alternatives and ranking according to compromise solution (MARCOS) method which can handle almost any decision problem involving a finite number of alternatives and multiple conflicting decision criteria.

Design/methodology/approach

The MARCOS method of the MCDM technique was deployed in this study to rank 17 cotton fibre lots based on their quality values. Six apposite fibre properties, namely, fibre bundle strength, elongation, fineness, upper half mean length, uniformity index and short fibre content are considered as the six decision criteria assigning weights previously determined by an earlier researcher using analytic hierarchy process.

Findings

Among the 17 alternatives, C9 secured rank 1 (the best lot) with the highest utility function (0.704) and C7 occupied rank 17 (the worst lot) with the lowest utility function (0.596). Ranking given by MARCOS method showed high degree of congruence with the earlier approaches, as evidenced by high rank correlation coefficients (Rs > 0.814). During sensitivity analyses, no occurrence of rank reversal is observed. The correlations between the quality value-based ranking and the yarn tenacity-based rankings are better than many of the traditional methods. The results can be improved further by adopting other efficient method of weighting the criteria.

Practical implications

The properties of raw cotton have significant impact on the quality of final yarn. Compared to the traditional methods, MCDM is reported as the most viable solution in which fibre parameters are given their due importance while formulating a single index known as quality value. The present study demonstrates the application of a recently developed exponent of MCDM in the name of MARCOS for the first time to address a cotton fibre selection problem for textile spinning mills. The same approach can also be extended to solve other decision problems of the textile industry, in general.

Originality/value

Novelty of the present study lies in the fact that the MARCOS is a very recently developed MCDM method, and this is a maiden application of the MARCOS method in the domain of textile, in general, and cotton industry, in particular. The approach is very simple, highly effective and quite flexible in terms of number of alternatives and decision criteria, although highly robust and stable.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 5 June 2017

Pragnya Kanade and Bharat H. Patel

The main purpose of taking up this work was to see the influence of metallic nanoparticles on various fabric properties. This paper emphasizes on mechanical, aesthetic and…

Abstract

Purpose

The main purpose of taking up this work was to see the influence of metallic nanoparticles on various fabric properties. This paper emphasizes on mechanical, aesthetic and anti-bacterial properties of the polyester, cotton and polyester cotton-blended fabric samples.

Design/methodology/approach

Three fabrics, 100 per cent polyester, 100 per cent cotton and polyester cotton-blended (50:50), were procured from the market. They were subjected to mild washing treatment so that the fabrics could be impregnated with copper (Cu) nanoparticles following standard procedure. The characterization of Cu nano-loaded textiles has been done using various techniques such as scanning electron microscopy for surface morphology, X-ray fluorescence spectrometer for elemental analysis and Fourier transform infrared spectroscopy for chemical composition. However in this paper, the focus is on various fabric properties and influence of this treatment on them. Antimicrobial activity was measured as per AATCC 100 quantitative method.

Findings

The structural properties showed changes but not major ones. The impregnation of Cu nanoparticles is nothing but a chemical treatment, and it is not uncommon to find reduction in the mechanical properties of the specimen. Here also, the mechanical properties were studied but did not reveal any significant change. The aesthetic properties for cotton fabrics showed an improvement. Improvement in the anti-bacterial activity was observed for all the fabric samples but the improvement in cotton fabric is worth mentioning. Thus, nano treatment imparts anti-bacterial property without hampering the mechanical properties of the parent textiles.

Research limitations/implications

It is usual to find changes in the various properties of the materials subjected to nano treatment or treatment of any sort. Though the fabric samples were subjected to similar treatment, the quantity of nanoparticles taken up by each of them was different. The reason behind this could be the difference in the crystallinity of the fabric samples. Polyester fabric showed the highest resistance, as it was least affected by the nano treatment given. Cotton fabrics composed of cotton fibers are amorphous in nature, hence showed better take-up and hence were more affected by the said treatment.

Practical implications

Cotton fabrics are the most favored fabric, especially in regions with hot climatic conditions. Even though these fabrics are very sought after, they have a major drawback related to the aesthetic appeal of the fabric. These fabrics have very poor resistance to the crease formation, as well as their ability to recover from the external deformation. But the study conducted on the fabric samples has shown favorable results for the cotton fabric. A significant improvement in their aesthetic and anti-bacterial activity was found. At present, textiles with nano finishing fall in niche market due to its higher cost. But finishing with in-house Cu nanoparticles may open up hygiene textiles for consumers at affordable rates.

Social implications

Cotton is still the most popular natural fiber in most of the tropical and sub-tropical regions. People located in these places have a natural urge to wear fabrics made from cotton fibers. Due to the hot weather, sweating is natural. However, this tends to keep the skin in humid state resulting in various skin problems, as cotton is also prone to bacterial attack. But this work has shown positive results, meaning to say that cotton fabrics show improved resistance to the bacterial activity. Hence, its suitability for hygiene applications may soon become a reality.

Originality/value

It is true that a lot of work is being reported on nano materials and their application to textiles for various reasons. Recently, many reports are available related to finishing of textiles using nanoparticles. However, most of the researchers are using silver nanoparticles for the same. In this work, use of in-house Cu nanoparticles has been done to treat fabric samples, which is more economical than silver nano. Also quantity required to meet desired property with Cu nanoparticles is less than the conventional treatment. This work is a sincere attempt to prepare hygienic common textiles at economical rates using continuous application technique which offers durable efficacy against human pathogenic bacterium.

Details

Research Journal of Textile and Apparel, vol. 21 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 22 October 2018

Kh.M. Mostafa, Heba Ameen, Mahmoud Morsy, Amal El-Ebissy, Mohamed Adel and Ali Salah

This study aims to explore the incorporation of starch nanoparticles (SNPs) in cross-linking formulation of cotton fabrics to see their impact on fabric performance like tensile…

Abstract

Purpose

This study aims to explore the incorporation of starch nanoparticles (SNPs) in cross-linking formulation of cotton fabrics to see their impact on fabric performance like tensile strength, dry wrinkle recovery angles, elongation at break, degree of whiteness and increase in weight as well as durability.

Design/methodology/approach

SNPs of size around 80-100 nm were successfully prepared from native maize starch by Nano precipitation technique and confirmed instrumentally by scanning electron microscope (SEM), transmittance electron microscope (TEM), Fourier transformer infrared (FTIR) spectroscopy and particle size analyzer. The latter were incorporated in cross-linking formulation of cotton fabrics encompassing different concentrations of citric acid and sodium hypophosphite at different curing time and temperature in 100 ml distilled water to a wet pickup of ca. 85 per cent. The fabric samples were dried for 3 min at 85°C and cured at specified temperatures for a specified time intervals in thermo fixing oven according to pad-dry-cure method.

Findings

FTIR spectra and SEM micrograph signified the chemical structure and surface morphology of cotton fabric before and after finishing in absence and presence of SNPs. Cotton fabric samples finished in presence of SNPs showed a higher tensile strength, elongation at break, comparable dry wrinkle recovery angles and degree of whiteness than that finished in their absence. On the other hand, the enhancement in the aforementioned performance reflects the positive impact of incorporation of SNPs in textile finishing especially with strength properties; which are one of the important requirements for industrial fabrics that can be used widely in heavy-duty applications.

Research limitations/implications

SNPs with its booming effect with respect to biodegradability, reactivity and higher surface area can be used as a novel reinforcement permanent finish for cotton fabrics instead of more hazardous materials likes poly acrylate and monomeric compounds.

Practical implications

As SNPs biopolymers is one of the important reinforcement agents, so it was expected that it would minimize the great loss in strength properties during easy-care cotton finishing and improve the fabric performance.

Originality/value

The novelty addressed here is undertaken with a view to remediate some of the serious defects of easy-care cotton fabrics using poly carboxylic acids; especially with the great loss in strength properties by virtue of using SNPs as a permanent finish. Besides, to the authors’ knowledge, there is no published work so far concerning the use of SNPs as an innovative base for production of easy-care finished cotton textiles with high performance.

Article
Publication date: 17 May 2013

Mazeyar Parvinzadeh Gashti, Rambod Rashidian, Arash Almasian and Ali Badakhshan Zohouri

In recent years, the textile industry has been required to develop new methods and technologies through introduction of some new materials in various processes rather than…

Abstract

Purpose

In recent years, the textile industry has been required to develop new methods and technologies through introduction of some new materials in various processes rather than employing the same conventional chemicals. The aim of this research was to investigate the changes induced on the cotton fibre by the nanoclay treatment using a pre‐treatment method.

Design/methodology/approach

The fibres were dyed with basic and direct dyes after the nanoclay pre‐treatment. Technical measurements were studied including Fourier‐transform infrared spectroscopy (FTIR), UV‐visible spectrophotometer, differential scanning calorimetry (DSC), thermal degradation analysis (TGA), scanning electron microscopy (SEM), moisture regain measurement (MRM), tensile strength test (TST), reflectance spectroscopy (RS) and fastnesses evaluation.

Findings

The intensity of the major peaks in FTIR spectra of the nanoclay treated sample is in favour of the chemical changes of the cellulose functional groups. Basic dyes showed a higher dyeability on the clay pre‐treated samples compared to raw materials. The results of the colour measurements showed that the more concentration of the clay mineral was used, the darker the colour of the dyed sample was. Some interesting results were obtained in the research.

Research limitations/implications

The nanoclay and a dispersing agent used in the present context were used as received. Besides, the type of the dispersing agent is important for preparation of a colloidal dispersion of nanoclay.

Practical implications

The method developed in this research provides a simple and practical solution for improving the dyeability of cotton with direct and basic dyes.

Originality/value

The method for enhancing the dyeability of cotton is novel and can be used in cotton processing with new properties.

Details

Pigment & Resin Technology, vol. 42 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 29 September 2021

Guizhen Ke, Ziying Zhao, Chen Shuhui and Jianqiang Li

The purpose of this paper is to explore a new eco-friendly green textile dyeing. Natural plant Buddleja officinalis is traditionally used as yellow pigment addition in rice. It is…

189

Abstract

Purpose

The purpose of this paper is to explore a new eco-friendly green textile dyeing. Natural plant Buddleja officinalis is traditionally used as yellow pigment addition in rice. It is worth developing its application and dyeing performance in cotton fabric.

Design/methodology/approach

Buddleja officinalis dried flower was extracted with ethanol aqueous. The extraction conditions including ethanol concentration, material to liquor ratio, extract time and temperature were optimized. Then cotton fabrics were dyed with Buddleja officinalis extraction under conventional and ultrasonic conditions. The effects of dyeing time, bath ratio, pH value of dyeing bath, dyeing temperature and mordants on K/S values were studied and the resulting color strength obtained by conventional and ultrasonic dyeing were compared. The ultraviolet (UV) transmittance of Buddleja officinalis dyed cotton fabric was also evaluated.

Findings

The color strength of the fabric dyed with Buddleja officinalis under ultrasonic conditions was higher than that under conventional conditions. Alum, Fe and Cu as simultaneous mordants improved the K/S value of the dyed cotton fabrics. Both washing fastness and rubbing fastness were fairly good in all Buddleja officinalis dyed cotton fabrics, washing fastness = 3–4 and rubbing fastness = 4. What’s more, the dyed cotton fabrics showed lower transmittance values as compared to undyed cotton fabrics and indicated potential UV protection capability.

Practical implications

Buddleja officinalis can be a new natural dye source for the ultrasonic dyeing of cotton fabric.

Originality/value

It is for the first time that Buddleja officinalis is used as a natural dye in cotton fabric dyeing with less water and the dyeing using ultrasound has been found to have an obvious improvement in the color strength and color-fastness.

Details

Pigment & Resin Technology, vol. 51 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 16 July 2020

Muhammet Çağrı Ayan, Serap Kiriş, Ahmet Yapici, Muharrem Karaaslan, Oğuzhan Akgöl, Olcay Altıntaş and Emin Ünal

The purpose of this paper is to investigate cotton fabric behavior that is exposed to radar waves between selected operation frequencies as an alternative radar-absorbing material…

Abstract

Purpose

The purpose of this paper is to investigate cotton fabric behavior that is exposed to radar waves between selected operation frequencies as an alternative radar-absorbing material (RAM) response. Cotton fabric biocomposite materials were compared with carbon fabric composite materials, which are good absorbers, in terms of mechanical and electromagnetic (EM) properties for that purpose.

Design/methodology/approach

The laminated composite plates were manufactured by using a vacuum infusion process. The EM tests were experimentally performed with a vector network analyzer to measure reflection, transmission and absorption ability of cotton fabric, carbon fabric and cotton–carbon fabric (side by side) composite plates between 3 and 18 GHz. The tensile and low-velocity impact tests were carried out to compare the mechanical properties of cotton fabric and carbon fabric composite plates. A scanning electron microscope was used for viewing the topographical features of fracture surfaces.

Findings

The cotton fabric composite plate exhibits low mechanical values, but it gives higher EM wave absorption values than the carbon fabric composite plate in certain frequency ranges. Comparing the EM absorption properties of the combination of cotton and carbon composites with those of the carbon composite alone, it appears that the cotton–carbon combination can be considered as a better absorber than the carbon composite in a frequency range from 12 to 18 GHz at Ku band.

Originality/value

This paper shows how cotton, which is a natural and easily supplied low-cost raw material, can be evaluated as a RAM.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 17 January 2022

Chirato Godana Korra

This paper aims to prevent cotton textiles from fungi damage using eco-friendly aloe vera leaf extract, which was applied at a minimum amount, and cost-effective material.

Abstract

Purpose

This paper aims to prevent cotton textiles from fungi damage using eco-friendly aloe vera leaf extract, which was applied at a minimum amount, and cost-effective material.

Design/methodology/approach

Batch extraction method using methanol solvent; phytochemical analysis was investigated and three-level factorial design of experiment and analysis of variance (ANOVA) was used for the optimization of 27 test runs. The finish was applied by pad-dry-cue at distinct concentrations, and the chemical property after treatment was studied. Colorfastness and coordinates are analyzed. Cotton fabrics were cultured with Fusarium oxysporum fungi and the anti-fungal property was examined and reported according to AATCC 30–2004 standard.

Findings

The maximum yield of extract was at an optimum volume of 200 ml, 65 °C for 120 min. The effective antifungal fabric was achieved with minimum concentrations. There was significant strength loss in warp and weft direction. The treatment results in yellow-colored cotton fabric with fastness grade 3. The antifungal effect is durable until fifteen washes as the tensile strength losses were less than 1%.

Research limitations/implications

The findings of this work were based on samples considered in the laboratory. However, it can be reproducible at the factory production scale the treatment has the potential of yielding yellow dyed cotton fabric with multifunctional finishing.

Practical implications

The treated fabric is against Fusarium oxysporum Fungi which is one of the vital antimicrobial properties of textile apparel products for various areas of application.

Social implications

The natural extract material applied to a textile material is eco-friendly effective against microbes of cotton seeds during cultivation and apparel end-uses.

Originality/value

The work application of fungi resistance on cotton fabric using aloe vera active component was original; this work provides extraction of the active agent from aloe vera leaf, which is optimized statically and successfully applied for anti-fungal activity on cotton fabric.

Details

Research Journal of Textile and Apparel, vol. 27 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 31 July 2018

Shariful Islam, Shaikh Md. Mominul Alam and Shilpi Akter

The purpose of this paper is to facilitate the production of cotton spandex woven fabric with some user-friendly properties like wearer comfort, super stretch and elasticity. The…

Abstract

Purpose

The purpose of this paper is to facilitate the production of cotton spandex woven fabric with some user-friendly properties like wearer comfort, super stretch and elasticity. The findings could contribute to ease spandex production and to optimize its property of elasticity. Stretch or a super stretch property is generally desirable, as it can increase the comfort level of those who wear it. In this experiment, the difficulties which were identified while manufacturing cotton spandex woven fabric resolved after identification.

Design/methodology/approach

In this experiment, three types of cotton spandex woven fabrics, with different composition and constructions, were used to find out their elastic properties. Temperature ranging from 160°C to 200°C with the machine speed of 20 to 26 MPM (meter per minute) was applied with an adjusted industrial setting with the facilities of a stenter machine to optimize the properties of cotton spandex woven fabric.

Findings

The findings establish that the temperature treatment closely compacted the elastic portions with cotton fibers, giving stability to the spandex yarn, which as a result, influenced cotton spandex woven fabric’s elastic properties, namely, stretch, growth and recovery. The consequences of temperature on cotton spandex yarns were assessed using a microscope, and the results were subsequently analyzed.

Research limitations/implications

Because of the poor facilities in testing laboratory, only few tests with microscopic evaluation were conducted to assess the elastic performances of cotton spandex woven fabric.

Practical implications

It is a practice-based research, and the findings could be beneficial to personnel in the textile industry, who are responsible for the manufacturing of cotton spandex woven fabric.

Social implications

This research could enhance the wearer’s satisfaction, with some comfort elastic properties, which can have a positive influence over spandex clothing industries.

Originality/value

This research establishes that heat setting had a progressive influence on the production of cotton spandex woven fabric and for the optimization of its elastic performances. This research opens a possible way for scholars to further study in this field.

Details

Research Journal of Textile and Apparel, vol. 22 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

21 – 30 of over 8000