Search results

1 – 10 of 49
Article
Publication date: 19 April 2022

Raj Agarwal, Vishal Gupta and Jaskaran Singh

The complications caused by metallic orthopaedic bone screws like stress-shielding effect, screw loosening, screw migration, higher density difference, painful reoperation and…

Abstract

Purpose

The complications caused by metallic orthopaedic bone screws like stress-shielding effect, screw loosening, screw migration, higher density difference, painful reoperation and revision surgery for screw extraction can be overcome with the bioabsorbable bone screws. This study aims to use additive manufacturing (AM) technology to fabricate orthopaedic biodegradable cortical screws to reduce the bone-screw-related-complications.

Design/methodology/approach

The fused filament fabrication technology (FFFT)-based AM technique is used to fabricate orthopaedic cortical screws. The influence of various process parameters like infill pattern, infill percentage, layer height, wall thickness and different biological solutions were observed on the compressive strength and degradation behaviour of cortical screws.

Findings

The porous lattice structures in cortical screws using the rapid prototyping technique were found to be better as porous screws can enhance bone growth and accelerate the osseointegration process with sufficient mechanical strength. The compressive strength and degradation rate of the screw is highly dependent on process parameters used during the fabrication of the screw. The compressive strength of screw is inversely proportional to the degradation rate of the cortical screw.

Research limitations/implications

The present study is focused on cortical screws. Further different orthopaedic screws can be modified with the use of different rapid prototyping techniques.

Originality/value

The use of rapid prototyping techniques for patient-specific bone screw designs is scantly reported. This study uses FFFT-based AM technique to fabricate various infill patterns and porosity of cortical screws to enhance the design of orthopaedic cortical screws.

Details

Rapid Prototyping Journal, vol. 28 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 26 September 2023

Chiara Bregoli, Jacopo Fiocchi, Carlo Alberto Biffi and Ausonio Tuissi

The present study investigates the mechanical properties of three types of Ti6Al4V ELI bone screws realized using the laser powder bed fusion (LPBF) process: a fully threaded screw

Abstract

Purpose

The present study investigates the mechanical properties of three types of Ti6Al4V ELI bone screws realized using the laser powder bed fusion (LPBF) process: a fully threaded screw and two groups containing differently arranged sectors made of lattice-based Voronoi (LBV) structure in a longitudinal and transversal position, respectively. This study aims to explore the potentialities related to the introduction of LBV structure and assess its impact on the implant’s primary stability and mechanical performance.

Design/methodology/approach

The optimized bone screw designs were realized using the LPBF process. The quality and integrity of the specimens were assessed by scanning electron microscopy and micro-computed tomography. Primary stability was experimentally verified by the insertion and removal of the screws in standard polyurethane foam blocks. Finally, torsional tests were carried out to compare and assess the mechanical strength of the different designs.

Findings

The introduction of the LBV structure decreases the elastic modulus of the implant. Longitudinal LBV type screws demonstrated the lowest insertion torque (associated with lower bone damage) while still displaying promising torsional strength and removal force compared with full-thread screws. The use of LBV structure can promote improved functional performances with respect to the reference thread, enabling the use of lattice structures in the biomedical sector.

Originality/value

The paper fulfils an identified interest in designing customized implants with improved primary stability and promising features for secondary stability.

Details

Rapid Prototyping Journal, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 14 January 2014

Timothy J. Horn, Ola L.A. Harrysson, Harvey A. West II, Jeffrey P. Little and Denis J. Marcellin-Little

The aim of this study is to describe an improved experimental substrate for the mechanical testing of patient-specific implants fabricated using direct metal additive…

Abstract

Purpose

The aim of this study is to describe an improved experimental substrate for the mechanical testing of patient-specific implants fabricated using direct metal additive manufacturing processes. This method reduces variability and sample size requirements and addresses the importance of geometry at the bone/implant interface.

Design/methodology/approach

Short-fiber glass/resin materials for cortical bone and polyurethane foam materials for cancellous bone were evaluated using standard tensile coupons. A method for fabricating bone analogs with patient-specific geometries using rapid tooling is presented. Bone analogs of a canine radius were fabricated and compared to cadaveric specimens in several biomechanical tests as validation.

Findings

The analog materials exhibit a tensile modulus that falls within the range of expected values for cortical and cancellous bone. The tensile properties of the cortical bone analog vary with fiber loading. The canine radius models exhibited similar mechanical properties to the cadaveric specimens with a reduced variability.

Research limitations/implications

Additional replications involving different bone geometries, types of bone and/or implants are required for a full validation. Further, the materials used here are only intended to mimic the mechanical properties of bone on a macro scale within a relatively narrow range. These analog models have not been shown to address the complex microscopic or viscoelastic behavior of bone in the present study.

Originality/value

Scientific data on the formulation and fabrication of bone analogs are absent from the literature. The literature also lacks an experimental platform that matches patient-specific implant/bone geometries at the bone implant interface.

Details

Rapid Prototyping Journal, vol. 20 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 March 2008

Victor Caraveo, Scott Lovald, Tariq Khraishi, Jon Wagner and Bret Baack

Finite element (FE) modeling of the human dentate mandible is the method of choice currently used for simulating structural fracture analyses in the mandibular region. A finite…

Abstract

Finite element (FE) modeling of the human dentate mandible is the method of choice currently used for simulating structural fracture analyses in the mandibular region. A finite element model of a parasymphyseal fracture with an internal rigid fixation plate‐screw system has been developed to compare the effects of including frictionless/frictional contact boundary conditions at the fracture site. It is common practice to ignore contact boundary conditions in FE modeling of mandibular fractures due to the non‐linearities causing increased computational requirements. The stress distributions and displacements of the mandibular fracture region indicate a significant difference resulting from the introduction of realistic contact boundary conditions. These current findings suggest that even though the modeling of extreme situations, i.e. non‐contact modeling of unhealed fractures, may provide insight to non‐union problems, future mandibular fracture models should include frictional contact boundary conditions. This is in order to capture more realistic behavior of the system to be analyzed.

Details

Multidiscipline Modeling in Materials and Structures, vol. 4 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 16 July 2019

Behnam Gomari, Farzam Farahmand and Hassan Farkhondeh

An important challenge of the osteotomy procedures, particularly in the case of large and complex corrections, is the fixation of the osteotomy site. The purpose of this study is…

Abstract

Purpose

An important challenge of the osteotomy procedures, particularly in the case of large and complex corrections, is the fixation of the osteotomy site. The purpose of this study is to propose a practical and cost-effect methodology for the plate adapting problem of osteotomy surgery.

Design/methodology/approach

A novel patient-specific plate contouring methodology, based on rapid prototyping (RP) and multi-point forming (MPF) techniques, was developed and evaluated. In this methodology, a female mold is fabricated by RP, based on the geometry of the osteotomy site and estimation of the plate spring back. The mold is then used to configure a MPF die, which is then used for press forming of the factory-made locking plate. The applicability of the methodology was assessed in two case studies.

Findings

The results of implementing the methodology on a femoral and a tibial locking plate indicated very good conformity with the underlying bone, in both the frontal and sagittal planes. The surgical application of the pre-operatively contoured tibial plate facilitated the plate locating and screw inserting procedures, and provided a secure fixation for bone fragments.

Practical implications

The results are promising and provide a proof of concept for the feasibility and applicability of the proposed methodology in clinical practice, as a complementary to the existing surgical preplanning and patient-specific instrument preparations.

Originality/value

The advantageous features of RP and the MPF were used to provide a solution for the plate adapting problem of osteotomy surgery.

Article
Publication date: 1 January 2024

Shrutika Sharma, Vishal Gupta, Deepa Mudgal and Vishal Srivastava

Three-dimensional (3D) printing is highly dependent on printing process parameters for achieving high mechanical strength. It is a time-consuming and expensive operation to…

Abstract

Purpose

Three-dimensional (3D) printing is highly dependent on printing process parameters for achieving high mechanical strength. It is a time-consuming and expensive operation to experiment with different printing settings. The current study aims to propose a regression-based machine learning model to predict the mechanical behavior of ulna bone plates.

Design/methodology/approach

The bone plates were formed using fused deposition modeling (FDM) technique, with printing attributes being varied. The machine learning models such as linear regression, AdaBoost regression, gradient boosting regression (GBR), random forest, decision trees and k-nearest neighbors were trained for predicting tensile strength and flexural strength. Model performance was assessed using root mean square error (RMSE), coefficient of determination (R2) and mean absolute error (MAE).

Findings

Traditional experimentation with various settings is both time-consuming and expensive, emphasizing the need for alternative approaches. Among the models tested, GBR model demonstrated the best performance in predicting both tensile and flexural strength and achieved the lowest RMSE, highest R2 and lowest MAE, which are 1.4778 ± 0.4336 MPa, 0.9213 ± 0.0589 and 1.2555 ± 0.3799 MPa, respectively, and 3.0337 ± 0.3725 MPa, 0.9269 ± 0.0293 and 2.3815 ± 0.2915 MPa, respectively. The findings open up opportunities for doctors and surgeons to use GBR as a reliable tool for fabricating patient-specific bone plates, without the need for extensive trial experiments.

Research limitations/implications

The current study is limited to the usage of a few models. Other machine learning-based models can be used for prediction-based study.

Originality/value

This study uses machine learning to predict the mechanical properties of FDM-based distal ulna bone plate, replacing traditional design of experiments methods with machine learning to streamline the production of orthopedic implants. It helps medical professionals, such as physicians and surgeons, make informed decisions when fabricating customized bone plates for their patients while reducing the need for time-consuming experimentation, thereby addressing a common limitation of 3D printing medical implants.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 January 2023

Shrutika Sharma, Vishal Gupta and Deepa Mudgal

The implications of metallic biomaterials involve stress shielding, bone osteoporosis, release of toxic ions, poor wear and corrosion resistance and patient discomfort due to the…

Abstract

Purpose

The implications of metallic biomaterials involve stress shielding, bone osteoporosis, release of toxic ions, poor wear and corrosion resistance and patient discomfort due to the need of second operation. This study aims to use additive manufacturing (AM) process for fabrication of biodegradable orthopedic small locking bone plates to overcome complications related to metallic biomaterials.

Design/methodology/approach

Fused deposition modeling technique has been used for fabrication of bone plates. The effect of varying printing parameters such as infill density, layer height, wall thickness and print speed has been studied on tensile and flexural properties of bone plates using response surface methodology-based design of experiments.

Findings

The maximum tensile and flexural strengths are mainly dependent on printing parameters used during the fabrication of bone plates. Tensile and flexural strengths increase with increase in infill density and wall thickness and decrease with increase in layer height and wall thickness.

Research limitations/implications

The present work is focused on bone plates. In addition, different AM techniques can be used for fabrication of other biomedical implants.

Originality/value

Studies on application of AM techniques on distal ulna small locking bone plates have been hardly reported. This work involves optimization of printing parameters for development of distal ulna-based bone plate with high mechanical strength. Characterization of microscopic fractures has also been performed for understanding the fracture behavior of bone plates.

Details

Rapid Prototyping Journal, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 April 2024

Celia Rufo-Martín, Ramiro Mantecón, Geroge Youssef, Henar Miguelez and Jose Díaz-Álvarez

Polymethyl methacrylate (PMMA) is a remarkable biocompatible material for bone cement and regeneration. It is also considered 3D printable but requires in-depth…

Abstract

Purpose

Polymethyl methacrylate (PMMA) is a remarkable biocompatible material for bone cement and regeneration. It is also considered 3D printable but requires in-depth process–structure–properties studies. This study aims to elucidate the mechanistic effects of processing parameters and sterilization on PMMA-based implants.

Design/methodology/approach

The approach comprised manufacturing samples with different raster angle orientations to capitalize on the influence of the filament alignment with the loading direction. One sample set was sterilized using an autoclave, while another was kept as a reference. The samples underwent a comprehensive characterization regimen of mechanical tension, compression and flexural testing. Thermal and microscale mechanical properties were also analyzed to explore the extent of the appreciated modifications as a function of processing conditions.

Findings

Thermal and microscale mechanical properties remained almost unaltered, whereas the mesoscale mechanical behavior varied from the as-printed to the after-autoclaving specimens. Although the mechanical behavior reported a pronounced dependence on the printing orientation, sterilization had minimal effects on the properties of 3D printed PMMA structures. Nonetheless, notable changes in appearance were attributed, and heat reversed as a response to thermally driven conformational rearrangements of the molecules.

Originality/value

This research further deepens the viability of 3D printed PMMA for biomedical applications, contributing to the overall comprehension of the polymer and the thermal processes associated with its implementation in biomedical applications, including personalized implants.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 9 January 2009

Jongwon Lee, Inwook Hwang, Keehoon Kim, Seungmoon Choi, Wan Kyun Chung and Young Soo Kim

The purpose of this paper is to present a surgical robot for spinal fusion and its control framework that provides higher operation accuracy, greater flexibility of robot position…

Abstract

Purpose

The purpose of this paper is to present a surgical robot for spinal fusion and its control framework that provides higher operation accuracy, greater flexibility of robot position control, and improved ergonomics.

Design/methodology/approach

A human‐guided robot for the spinal fusion surgery has been developed with a dexterous end‐effector that is capable of high‐speed drilling for cortical layer gimleting and tele‐operated insertion of screws into the vertebrae. The end‐effector is position‐controlled by a five degrees‐of‐freedom robot body that has a kinematically closed structure to withstand strong reaction force occurring in the surgery. The robot also allows the surgeon to control cooperatively the position and orientation of the end‐effector in order to provide maximum flexibility in exploiting his or her expertise. Also incorporated for improved safety is a “drill‐by‐wire” mechanism wherein a screw is tele‐drilled by the surgeon in a mechanically decoupled master/slave system. Finally, a torque‐rendering algorithm that adds synthetic open‐loop high‐frequency components on feedback torque increases the realism of tele‐drilling in the screw‐by‐wire mechanism.

Findings

Experimental results indicated that this assistive robot for spinal fusion performs drilling tasks within the static regulation errors less than 0.1 μm for position control and less than 0.05° for orientation control. The users of the tele‐drilling reported subjectively that they experienced torque feedback similar to that of direct screw insertion.

Research limitations/implications

Although the robotic surgery system itself has been developed, integration with surgery planning and tracking systems is ongoing. Thus, the screw insertion accuracy of a whole surgery system with the assistive robot is to be investigated in the near future.

Originality/value

The paper arguably pioneers the dexterous end‐effector appropriately designed for spinal fusion, the cooperative robot position‐control algorithm, the screw‐by‐wire mechanism for indirect screw insertion, and the torque‐rendering algorithm for more realistic torque feedback. In particular, the system has the potential of circumventing the screw‐loosening problem, a common defect in the conventional surgeon‐operated or robot‐assisted spinal fusion surgery.

Details

Industrial Robot: An International Journal, vol. 36 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 January 2017

Emad Abouel Nasr, Abdurahman Mushabab Al-Ahmari, Khaja Moiduddin, Mohammed Al Kindi and Ali K. Kamrani

The purpose of this paper is to demonstrate the route to digitize the customized mandible implants consisting of image acquisition, processing, implant design, fitting rehearsal…

Abstract

Purpose

The purpose of this paper is to demonstrate the route to digitize the customized mandible implants consisting of image acquisition, processing, implant design, fitting rehearsal and fabrication using fused deposition modeling and electron beam melting methodologies.

Design/methodology/approach

Recent advances in the field of rapid prototyping, reverse engineering, medical imaging and image processing have led to new heights in the medical applications of additive manufacturing (AM). AM has gained a lot of attention and interest during recent years because of its high potential in medical fields.

Findings

Produced mandible implants using casting, milling and machining are of standard sizes and shapes. As each person’s physique and anatomical bone structure are unique, these commercially produced standard implants are manually bent before surgery using trial and error methodology to custom fit the patient’s jaw. Any mismatch between the actual bone and the implant results in implant failure and psychological stress and pain to the patient.

Originality/value

The novelty in this paper is the construction of the customized mandibular implant from the computed tomography (CT) scan which includes surface reconstruction, implant design with validation and simulation of the mechanical behavior of the design implant using finite element analysis (FEA). There has been few research studies on the design and customization of the implants before surgery, but there had been hardly any study related to customized design implant and evaluating the biomechanical response on the newly designed implant using FEA. Though few studies are related to FEA on the reconstruction plates, but their paper lacks the implant design model and the reconstruction model. In this research study, an integrated framework is developed for the implant design, right from the CT scan of the patient including the softwares involved through out in the study and then performing the biomechanical study on the customized design implant to prove that the designed implant can withstand the biting and loading conditions. The proposed research methodology which includes the interactions between medical practitioners and the implant design engineers can be incorporated to any other reconstruction bone surgeries.

Details

Rapid Prototyping Journal, vol. 23 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 49