Search results

1 – 10 of over 8000
Article
Publication date: 2 November 2012

Jiayuan Hu, Shunan Cao, Li Yin, Qinqin Liang and Jianli Xie

Some power plants in China that adopt reverse osmosis (RO) product water as their fresh water source face serious metal corrosion of their water distribution system. The corrosion

Abstract

Purpose

Some power plants in China that adopt reverse osmosis (RO) product water as their fresh water source face serious metal corrosion of their water distribution system. The corrosion process of carbon steel in RO product water is still not clear and there is no suitable anti‐corrosion method for the power plant to employ. The purpose of this paper is to study the corrosion behavior of carbon steel in RO product water, determine the factors leading to the high corrosion rate of carbon steel, and then suggest appropriate anti‐corrosion measures.

Design/methodology/approach

By measuring polarization curves and AC impedance values of the corrosion system and analyzing corrosion products using scanning electron microscopy (SEM), infrared spectroscopy (IR) and X‐ray diffraction (XRD), the corrosion behavior of Q235A carbon steel in the RO product water derived from seawater was studied.

Findings

The experimental results showed that the corrosion process of carbon steel in RO product water is controlled by the diffusion process of oxygen, and the corrosion products contain γ‐FeOOH, Fe3O4 and small amounts of α‐FeOOH. Although rust formed had a double layer structure, the outer rust layer, which contained γ‐FeOOH and a little α‐FeOOH, was thin. The inner rust layer, containing Fe3O4, was the main component of the rust layer. Due to the weak acidity of RO product water, γ‐FeOOH can be transformed to Fe3O4 very quickly and Fe3O4 will accumulate on the metal surface. Because of the electrical conductivity and fractured surface of the Fe3O4 layer, the corrosion product layer cannot inhibit the corrosion process by hindering the diffusion process of oxygen, and hence the corrosion rate of carbon steel is always high.

Originality/value

The paper describes the first systematic research to be carried out on the corrosion behavior of carbon steel in RO product water. It was found that the generation and accumulation of Fe3O4 on the metal surface was the primary reason leading to the high corrosion rate of carbon steel, and anti‐corrosion measures can be chosen following the following rules: deoxygenation, raising of the pH of the solution, or addition of corrosion inhibitors to the solution.

Details

Anti-Corrosion Methods and Materials, vol. 59 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 5 May 2015

Min Zhang, Hong-Hua Ge, Xue-Juan Wang, Xin-Jing Meng, Yu-Zeng Zhao and Qiang-Qiang Liao

– The purpose of this study was to explore the differences in the corrosion behavior of carbon steel in simulated reverse osmosis (RO) product water, and in seawater.

Abstract

Purpose

The purpose of this study was to explore the differences in the corrosion behavior of carbon steel in simulated reverse osmosis (RO) product water, and in seawater.

Design/methodology/approach

The wire beam electrodes (WBE) and coupons made from Type Q235 carbon steel and were immersed in simulated reverse osmosis product water, and in seawater, for fifteen days. The corrosion potential distribution on the WBE at different times was measured. The corrosion rates of the carbon steel in different solutions were obtained using weight loss determinations. The different corrosion behavior of carbon steel in the two kinds of solution was analyzed.

Findings

The results showed that the average corrosion potential, micro-cathode potential and micro-anode potential of the WBE decreased with time in simulated RO product water. During this period, the maximum potential difference between micro-cathodes and micro-anodes on the WBE surface also decreased with time. The potential difference was more than 260mV at the beginning of the test and was still greater than 110mV after fifteen days of immersion. The positions of cathodes and anodes remained basically unchanged and corrosion took place on the localized anode during the experiments. The average corrosion potential, micro-cathode potential and micro-anode potential on the WBE surface also decreased with time in the simulated seawater. However, the maximum potential difference between micro-cathode and micro-anode on the WBE surface in the simulated seawater was much smaller than was the case in simulated RO product water. It was 37.8 mV at the beginning of the test and was no more than 12mV after two days immersion. The positions of cathode region and anode kept changing, leading to overall uniform corrosion. The actual corrosion rate on the corroded anode region in simulated RO product water was greater than was the case in simulated seawater.

Originality/value

The corrosion behavior differences of carbon steel between in RO product water and in seawater were revealed by using wire beam electrodes (WBE). From the micro point of view, it explained the reason why the actual corrosion rate of carbon steel in RO product water was greater than that in sea water. The results can be helpful to explore future corrosion control methods for carbon steel in RO product water.

Details

Anti-Corrosion Methods and Materials, vol. 62 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 17 April 2020

Guirong Yang, Wenming Song, Zibo Zhu, Ying Ma and Yuan Hao

The paper aims to study the effect of liquid flow velocity on corrosion behavior of 20# steel at initial stage under (CO2/aqueous solution) gas–liquid two-phase plug flow…

Abstract

Purpose

The paper aims to study the effect of liquid flow velocity on corrosion behavior of 20# steel at initial stage under (CO2/aqueous solution) gas–liquid two-phase plug flow conditions.

Design/methodology/approach

Weight loss, scanning electron microscopy, energy-dispersive X-ray spectroscopy and XPS methods were used in this study.

Findings

The corrosion rate increased with the increasing liquid flow velocity at any different corrosion time. The corrosion rate decreased with the extension of corrosion time at the same liquid flow velocity. There was no continuous corrosion products film on the whole pipe wall at any different corrosion time. The macroscopic brown-yellow corrosion products on the pipe wall surface decreased with the increasing liquid flow velocity and the loose floccus corrosion products decreased gradually until these products were transformed into un-continuous needle-like dense products with the increasing liquid velocity. The main elements among the products film were Fe, C and O, and the main phases of products film on the pipe wall were Fe3C, FeCO3, FeOOH and Fe3O4. When the corrosion time was 1 h under different liquid–velocity condition, the thickness of local corrosion products film was from 3.5 to 3.8 µm.

Originality/value

The ion mass transfer model of corrosion process in pipe was put forward under gas–liquid two-phase plug flow condition. The total thickness of diffusion sublayer and turbulence sublayer decreased as well as the turbulence propagation coefficient increased with the increasing liquid velocity, which led to the increasing velocity of ion transfer during corrosion process. This was the fundamental reason for the increase of corrosion rate with the increasing liquid velocity.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 11 October 2018

Guirong Yang, Wenming Song, Fuqiang Wang, Ying Ma and Yuan Hao

This paper aims to investigate the corrosion rate, surface morphology and composition of corrosion products of 20# seamless steel in aqueous CO2 solution under stratified…

Abstract

Purpose

This paper aims to investigate the corrosion rate, surface morphology and composition of corrosion products of 20# seamless steel in aqueous CO2 solution under stratified gas-liquid two-phase flow condition. The development of a corrosion products layer has also been discussed.

Design/methodology/approach

The following methods were used: weight loss method, scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction.

Findings

The corrosion rate curve presents an irregular zigzag change trend with a gradual increase in time. The peak value of the corrosion rate appears when the corrosion time is 4 h and 8 h. The corrosion products layer is composed of two sub-layers: the inner dense layer that is about 6 µm thick and the outer loose layer that is about 9 µm thick when the corrosion time is 8 h. The main corrosion product are FeCO3 and Fe2O3.

Originality/value

The atomic ratio of Fe/C/O is relatively stable for the inner dense layer, but changes in thickness for the outer loose layer. There is a densification stage after a loose corrosion products layer forms, and it is periodic.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 29 March 2021

Guirong Yang, Zhaoxia Pan, Zhenghai Zhang, Wenming Song, Ying Ma and Yuan Hao

This study aims to investigate the initial corrosion behavior in aqueous solution of 20# seamless steel under (CO2/aqueous solution) gas–liquid two-phase stratified flow…

Abstract

Purpose

This study aims to investigate the initial corrosion behavior in aqueous solution of 20# seamless steel under (CO2/aqueous solution) gas–liquid two-phase stratified flow conditions.

Design/methodology/approach

The initial corrosion behavior was studied through the weight loss methods, scanning electron microscopy with energy-dispersive x-ray spectroscopy and x-ray diffraction.

Findings

The corrosion rate of 20# steel obviously increases with the increasing gas pressure at different corrosion time when the CO2 pressure is less than 0.11 MPa, and the increase of corrosion rate tends to be steady when the pressure exceeds 0.11 MPa. With the increase of CO2 pressure, the corrosion products changed from flocculent to acicular, granular and scaly. A four-stage model for the growth of the corrosion product layer was proposed, namely, the diffusion reaction stage, the local film formation stage, the complete film formation stage and the densification stage of the product film.

Originality/value

A four-stage model for the growth of the corrosion product layer on the pipe wall surface under this condition was proposed, namely, the diffusion reaction stage, the local film formation stage, the complete film formation stage and the densification stage of the product film. The growing process and densification mechanism of corrosion products layer were discussed.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 6 December 2018

Yuanpeng Cheng, Yu Bai, Zili Li and JianGuo Liu

The purpose of this paper was to investigate the corrosion behavior of X65 steel in the CO2/oil/water environment using mass loss method, potentiodynamic polarization technique…

Abstract

Purpose

The purpose of this paper was to investigate the corrosion behavior of X65 steel in the CO2/oil/water environment using mass loss method, potentiodynamic polarization technique and characterization of the corroded surface techniques.

Design/methodology/approach

The weight loss analysis, electrochemical study and surface investigation were carried out on X65 steel that had been immersed in the CO2/oil/water corrosive medium to understand the corrosion behavior of gathering pipeline steel. The weight loss tests were carried out in a 3L autoclave, and effects of flow velocity, CO2 partial pressure and water cut on the CO2 corrosion rate of X65 steel were studied. Electrochemical studies were carried out in a three-electrode electrochemical cell with the test temperature of 60°C and CO2 partial pressure of 1 atm by recording open circuit potential/time and potentiodynamic polarization characteristics. The surface and cross-sectional morphologies of corrosion product scales were characterized using scanning electron microscopy. The phases of corrosion product scales were investigated using X-ray diffraction.

Findings

The results showed that corrosion rates of X65 steel both increased at first and then decreased with the increase of flow velocity and CO2 partial pressure, and there were critical velocity and critical pressure in the simulated corrosive environment, below the critical value, the corrosion products formed on the steel surface were loose, porous and unstable, higher than the critical value, the corrosion product ?lms were dense, strong adhesion, and had a certain protective effect. Meanwhile, when the flow velocity exceeded the critical value, oil film could be adsorbed on the steel surface more evenly, corrosion reaction active points were reduced and the steel matrix was protected from being corroded and crude oil played a role of inhibitor, thus it influenced the corrosion rate. Above the critical CO2 partial pressure, the solubility of CO2 in crude oil increased, the viscosity of crude oil decreased and its fluidity became better, so that the probability of oil film adsorption increased, these factors led to the corrosion inhibition of X65 steel reinforced. The corrosion characteristics of gathering pipeline steel in the corrosive environment containing CO2 would change due to the presence of crude oil.

Originality/value

The results can be helpful in selecting the suitable corrosion inhibitors and targeted anti-corrosion measures for CO2/oil/water corrosive environment.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 19 August 2019

Hualiang Huang and Furong Bu

The purpose of this study is to provide a theoretical basis for the study of the galvanic corrosion mechanism of copper coupled silver-coating under a thin electrolyte layer in…

Abstract

Purpose

The purpose of this study is to provide a theoretical basis for the study of the galvanic corrosion mechanism of copper coupled silver-coating under a thin electrolyte layer in electronic systems.

Design/methodology/approach

Electrochemical measurements and surface characterizations.

Findings

The results indicate that the potential difference between copper and silver electrodes first quickly increases, and then reaches a relatively stable and large value with the extension of the immersion time. With the significant increase in the cathode/anode area ratio in electronic systems, the area ratio effect obviously accelerates the corrosion of copper due to the remarkable promotion of the cathode process. For a large cathode/anode area ratio, the galvanic current density always maintains a large value and exhibits an increasing trend with the extension of the immersion time, which is attributed that the area ratio effect reduces the protection of corrosion products. For the same area of cathode and anode, the galvanic current density always maintains a small value with the extension of the immersion time due to a low galvanic effect and protective corrosion products.

Practical implications

This work provides some information for the establishment of reliably protective measures for electronic systems in service.

Social implications

This work not only provides some information for the establishment of reliably protective measures for electronic systems in service, but also provides a theoretical basis for the selection of metal materials in microelectronic systems.

Originality/value

This work provides not only a theoretical basis for the study of the galvanic corrosion mechanism of Cu/Ag under a thin electrolyte layer, but also provides some information for the establishment of reliably protective measures for electronic systems in service.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 14 August 2018

Chunhui Kang, Decheng Kong, JiZheng Yao, Chunyun Guo, Li Wang, K. Xiao and C.F. Dong

This paper aims to investigate the corrosion behavior of zinc in a typical hot and dry atmosphere. It proposes the dynamic corrosion for different exposure periods. Results can…

135

Abstract

Purpose

This paper aims to investigate the corrosion behavior of zinc in a typical hot and dry atmosphere. It proposes the dynamic corrosion for different exposure periods. Results can provide the basic data and corrosion mechanism of zinc in such environment.

Design/methodology/approach

In this paper, the authors investigated the corrosion behavior of pure zinc exposed in the typical hot and dry environment in Turpan for one-four years, which has never been studied. Scanning electron microscopy, laser scanning confocal microscopy, electron probe micro-analyzer (EPMA), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) were conducted to measure the corrosion morphology and products of zinc. Finally, combining electrochemical impedance spectroscopy and scanning Kelvin probe techniques, the corrosion mechanism of zinc in Turpan was examined.

Findings

The thickness loss of the zinc followed an exponential law with respect to exposure time: D = 3.17 t0.61, and both of the rust layer resistance and the charge transfer resistance increased with exposure time. The corrosion products mainly comprised ZnO, Zn(OH)2, Zn5(CO3)2(OH)6, Zn4SO4(OH)6·5H2O and Zn12(SO4)3Cl3(OH)15·5H2O. The Kelvin potentials shifted toward the positive direction from −0.380 to −0.262 V (vs saturated calomel electrode [SCE]) when the exposure time extended from one to four years and the distribution of the corrosion products became more and more uniform.

Originality/value

The corrosion behavior of pure zinc in the typical hot and dry environment in Turpan has not been studied. The dynamic corrosion for different exposure periods was obtained. The corrosion products were systemically investigated via energy-dispersive X-ray spectroscopy, EPMA, XPS and XRD.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 11 October 2018

Reena Sachan and Ajay Kumar Singh

The purpose of this study is to investigate microbial influenced corrosion of steel because of iron oxidizing bacteria (IOB).

Abstract

Purpose

The purpose of this study is to investigate microbial influenced corrosion of steel because of iron oxidizing bacteria (IOB).

Design/methodology/approach

Carbon steel was selected for this study. Winogradsky media was used for isolation of IOB and as test solution for corrosion measurements. Electrochemical tests and immersion test were conducted to estimate the corrosion rate and extent of pitting. The corroded surface was analysed by SEM and corrosion products formed over the metal surface were identified by XRD and Fourier transformed infrared. Biofilm formed over the corroded metal was analysed by UV-visible spectroscopy for its extracellular polymeric substances (EPS) constituents.

Findings

Presence of IOB in Winogradsky medium enhances corrosion. Uniform and localized corrosion increases with increased bacterial concentration and EPS constituents of the biofilm. Iron sulphite formation as one of the corrosion products has been suggested to be responsible for increased corrosion attack in the inoculated media in comparison to control media where corrosion product observed is iron hydrogen phosphate which is protective in nature.

Originality/value

This work correlates increased corrosion of steel in the presence of bacteria with the nature of corrosion products formed over it in case of IOB. Formation of corrosion products is governed by various electrochemical reactions; hence, inhibition of such reactions may lead to reduce or stop the formation of such products which enhances corrosion and thereby may reduce the extent of microbial induced corrosion.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 10 September 2021

Zhong Wu, Qing Hu, Zhenbo Qin, Yiwen Zhang, Da-Hai Xia and Wenbin Hu

Nickel-aluminum bronze (NAB) has been widely used in ship propellers. It is always subjected to local micro-plastic deformation in service environments. This paper aims to study…

Abstract

Purpose

Nickel-aluminum bronze (NAB) has been widely used in ship propellers. It is always subjected to local micro-plastic deformation in service environments. This paper aims to study the influence of plastic deformation on the mechanical strength and corrosion resistance of NAB in 3.5 Wt.% NaCl solution.

Design/methodology/approach

Scanning electron microscope and X-ray diffraction were used to analyze the microstructure of NAB alloy with different plastic deformations. Mechanical properties of the sample were measured by tensile experiment, and corrosion behavior was studied by electrochemical measurements and the long-term immersion corrosion test.

Findings

Results showed that the plastic deformation caused lattice distortion but did not change the microstructure of NAB alloy. Microhardness and yield strength of NAB were significantly improved with the increase of deformation. The lattice distortion accelerated the formation of corrosion product film, which made the deformed alloy show a more positive open-circuit potential and an increased Rp. However, during the long-term immersion corrosion, the corrosion resistance of NAB alloys deteriorated with the increase of plastic deformation. This is because larger plastic deformation brought about higher internal stress in corrosion product film, which resulted in the premature peeling of the film and the loss of its protective effect on the alloy substrate.

Originality/value

Tensile plastic deformations were found to cause a decline in the corrosion resistance of NAB. And the mechanism was clarified from the evolution of corrosion products during the corrosion process.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of over 8000