Search results

1 – 10 of over 10000
Article
Publication date: 9 August 2019

Vaira Vignesh Ramalingam, Padmanaban Ramasamy and Madhav Datta

The purpose of this study is to refine the microstructure and improve the corrosion behaviour of aluminium alloy AA5083 by subjecting it to friction stir processing (FSP).

Abstract

Purpose

The purpose of this study is to refine the microstructure and improve the corrosion behaviour of aluminium alloy AA5083 by subjecting it to friction stir processing (FSP).

Design/methodology/approach

FSP trials are conducted as per central composite design, by varying tool rotation speed, tool traverse speed and shoulder diameter at three levels. The microstructure is examined and the hardness is measured for both the base material and the processed workpieces. The corrosion behaviour of the base material and processed workpieces is studied using potentiodynamic polarization technique for three different testing temperatures, and the corrosion current and corrosion rate are calculated.

Findings

The results reveal that FSP refined the grains, dispersed secondary phases, increased the hardness and improved the corrosion resistance of most of the friction stir processed specimens than the base material at all the three testing temperatures. Grain refinement and fine dispersion of ß phase improves the hardness and corrosion resistance of most of the FSPed specimens. However partial dissolution of ß phase decreases the hardness in some of the specimens. Most of the FSPed specimens displayed more positive potential than the base material at all the testing temperatures representing a higher nobility than the base material, as a result of fine dispersion of secondary phase particles in the matrix. Large pits formed on the surface of the base specimen indicating a higher corrosion rate at all three testing temperatures. The SEM image of FSPed specimens reveals the occurrence of very few pits and minimal corrosion products on the surface, which indicates lower corrosion rate.

Originality/value

The corrosion mechanism of the friction stir-processed AA5083 specimens is found to be a combination of activation and concentration polarization.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 5 February 2024

Dongsheng Wang, Xiaohan Sun, Yingchang Jiang, Xueting Chang and Xin Yonglei

Stainless-clad bimetallic steels (SCBS) are widely investigated in some extremely environmental applications areas, such as polar sailing area and tropical oil and gas platforms…

Abstract

Purpose

Stainless-clad bimetallic steels (SCBS) are widely investigated in some extremely environmental applications areas, such as polar sailing area and tropical oil and gas platforms areas, because of their excellent anticorrosion performance and relatively lower production costs. However, the properties of SCBS, including the mechanical strength, weldability and the anticorrosion behavior, have a direct relation with the manufacturing process and can affect their practical applications. This paper aims to review the application and the properties requirements of SCBS in marine environments to promote the application of this new material in more fields.

Design/methodology/approach

In this paper, the manufacturing process, welding and corrosion-resistant properties of SCBS were introduced systematically by reviewing the related literatures, and some results of the authors’ research group were also introduced briefly.

Findings

Different preparation methods, such as rolling composite, casting rolling composite, explosive composite, laser cladding and plasma arc cladding, as well as the process parameters, including the vacuum degree, rolling temperature, rolling reduction ratio, volume ratios of liquid to solid, explosive ratio and the heat treatment, influenced a lot on the properties of the SCBS through changing the interface microstructures. Otherwise, the variations in rolling temperature, pass, reduction and the grain size of clad steel also brought the dissimilarities of the mechanical properties, microhardness, bonding strength and toughness. Another two new processes, clad teeming method and interlayer explosive welding, deserve more attention because of their excellent microstructure control ability. The superior corrosion resistance of SCBS can alleviate the corrosion problem in the marine environment and prolong the service life of the equipment, but the phenomenon of galvanic corrosion should be noted as much as possible. The high dilution rate, welding process specifications and heat treatment can weaken the intergranular corrosion resistance in the weld area.

Originality/value

This paper summarizes the application of SCBS in marine environments and provides an overview and reference for the research of stainless-clad bimetallic steel.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 13 July 2023

Yunzhou Gu, Boyu Yuan and Liang Li

The purpose of this paper is to review the application of digital holography in studies of the corrosion of metallic materials.

Abstract

Purpose

The purpose of this paper is to review the application of digital holography in studies of the corrosion of metallic materials.

Design/methodology/approach

Digital holography is used for in situ observation of the dynamic processes at the electrode | electrolyte interface and on the electrode surface during the corrosion dissolution of metallic materials.

Findings

Digital holography is an effect method to in situ observe the corrosion processes, and it can provide a direct experimental foundation for studying the corrosion mechanism.

Originality/value

Even though there are several challenges, digital holography will play a significant role in studying corrosion processes.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 February 1968

J.A. Von Fraunhofer and G.A. Pickup

In the study of a corrosion phenomenon, corrosion product analysis can only be regarded as a part, albeit essential, of the whole investigation. The content to which any corrosion

Abstract

In the study of a corrosion phenomenon, corrosion product analysis can only be regarded as a part, albeit essential, of the whole investigation. The content to which any corrosion process, and its manifestations, is studied is governed by several factors, which include the information required, the motive behind the investigation (research or industrial), the relevance of laboratory tests with respect to service conditions and the cost of the work. The ad hoc solutions of a plant engineer are often satisfactory over an indefinite period but they can only rarely be regarded as the complete answer to a particular corrosion problem although they will permit the plant to carry on in operation. The corrosion engineer must be able to justify his proposed research or fundamental investigations into a corrosion process from a cost and time standpoint.

Details

Anti-Corrosion Methods and Materials, vol. 15 no. 2
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 2 November 2012

Jiayuan Hu, Shunan Cao, Li Yin, Qinqin Liang and Jianli Xie

Some power plants in China that adopt reverse osmosis (RO) product water as their fresh water source face serious metal corrosion of their water distribution system. The corrosion

Abstract

Purpose

Some power plants in China that adopt reverse osmosis (RO) product water as their fresh water source face serious metal corrosion of their water distribution system. The corrosion process of carbon steel in RO product water is still not clear and there is no suitable anti‐corrosion method for the power plant to employ. The purpose of this paper is to study the corrosion behavior of carbon steel in RO product water, determine the factors leading to the high corrosion rate of carbon steel, and then suggest appropriate anti‐corrosion measures.

Design/methodology/approach

By measuring polarization curves and AC impedance values of the corrosion system and analyzing corrosion products using scanning electron microscopy (SEM), infrared spectroscopy (IR) and X‐ray diffraction (XRD), the corrosion behavior of Q235A carbon steel in the RO product water derived from seawater was studied.

Findings

The experimental results showed that the corrosion process of carbon steel in RO product water is controlled by the diffusion process of oxygen, and the corrosion products contain γ‐FeOOH, Fe3O4 and small amounts of α‐FeOOH. Although rust formed had a double layer structure, the outer rust layer, which contained γ‐FeOOH and a little α‐FeOOH, was thin. The inner rust layer, containing Fe3O4, was the main component of the rust layer. Due to the weak acidity of RO product water, γ‐FeOOH can be transformed to Fe3O4 very quickly and Fe3O4 will accumulate on the metal surface. Because of the electrical conductivity and fractured surface of the Fe3O4 layer, the corrosion product layer cannot inhibit the corrosion process by hindering the diffusion process of oxygen, and hence the corrosion rate of carbon steel is always high.

Originality/value

The paper describes the first systematic research to be carried out on the corrosion behavior of carbon steel in RO product water. It was found that the generation and accumulation of Fe3O4 on the metal surface was the primary reason leading to the high corrosion rate of carbon steel, and anti‐corrosion measures can be chosen following the following rules: deoxygenation, raising of the pH of the solution, or addition of corrosion inhibitors to the solution.

Details

Anti-Corrosion Methods and Materials, vol. 59 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 7 November 2019

Andika Rachman and R.M. Chandima Ratnayake

Corrosion loop development is an integral part of the risk-based inspection (RBI) methodology. The corrosion loop approach allows a group of piping to be analyzed simultaneously…

Abstract

Purpose

Corrosion loop development is an integral part of the risk-based inspection (RBI) methodology. The corrosion loop approach allows a group of piping to be analyzed simultaneously, thus reducing non-value adding activities by eliminating repetitive degradation mechanism assessment for piping with similar operational and design characteristics. However, the development of the corrosion loop requires rigorous process that involves a considerable amount of engineering man-hours. Moreover, corrosion loop development process is a type of knowledge-intensive work that involves engineering judgement and intuition, causing the output to have high variability. The purpose of this paper is to reduce the amount of time and output variability of corrosion loop development process by utilizing machine learning and group technology method.

Design/methodology/approach

To achieve the research objectives, k-means clustering and non-hierarchical classification model are utilized to construct an algorithm that allows automation and a more effective and efficient corrosion loop development process. A case study is provided to demonstrate the functionality and performance of the corrosion loop development algorithm on an actual piping data set.

Findings

The results show that corrosion loops generated by the algorithm have lower variability and higher coherence than corrosion loops produced by manual work. Additionally, the utilization of the algorithm simplifies the corrosion loop development workflow, which potentially reduces the amount of time required to complete the development. The application of corrosion loop development algorithm is expected to generate a “leaner” overall RBI assessment process.

Research limitations/implications

Although the algorithm allows a part of corrosion loop development workflow to be automated, it is still deemed as necessary to allow the incorporation of the engineer’s expertise, experience and intuition into the algorithm outputs in order to capture tacit knowledge and refine insights generated by the algorithm intelligence.

Practical implications

This study shows that the advancement of Big Data analytics and artificial intelligence can promote the substitution of machines for human labors to conduct highly complex tasks requiring high qualifications and cognitive skills, including inspection and maintenance management area.

Originality/value

This paper discusses the novel way of developing a corrosion loop. The development of corrosion loop is an integral part of the RBI methodology, but it has less attention among scholars in inspection and maintenance-related subjects.

Details

Journal of Quality in Maintenance Engineering, vol. 26 no. 3
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 1 June 2003

P. Mošner, A. Kalendova´ and L. Koudelka

Twelve pigment compositions derived from the xCaO·(50−x)ZnO·20B2O3·30P2O5·(x=10, 20, 30) and yMgO·(50−y)ZnO·20B2O3·30P2O5·(y=10, 20, 30) systems were prepared. The synthesis was…

Abstract

Twelve pigment compositions derived from the xCaO·(50−x)ZnO·20B2O3·30P2O5·(x=10, 20, 30) and yMgO·(50−y)ZnO·20B2O3·30P2O5·(y=10, 20, 30) systems were prepared. The synthesis was carried out either by the medium‐temperature process or by the high‐temperature process followed by cooling in air and an isothermal crystallisation of the glass obtained. The pigments prepared by the medium‐temperature process achieved better corrosion results in styrene‐acrylate coating formulations, whereas those prepared by the high‐temperature process achieved better results in alkyd‐resin coating formulations. The anti‐corrosion results for the Ca‐Zn pigments were better than those for the Mg‐Zn pigments.

Details

Pigment & Resin Technology, vol. 32 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 21 March 2008

Manpreet Kaur, Harpreet Singh and Satya Prakash

This paper seeks to summarise the results of available research on the use of high velocity oxy‐fuel (HVOF) thermal‐spray technique to provide protection against high temperature…

1454

Abstract

Purpose

This paper seeks to summarise the results of available research on the use of high velocity oxy‐fuel (HVOF) thermal‐spray technique to provide protection against high temperature corrosion and erosion‐corrosion of materials.

Design/methodology/approach

This paper describes one of the recent thermal‐spray processes, namely HVOF thermal‐spray technology and presents a survey of the studies on the use of this technique to provide protection against corrosion and erosion‐corrosion of high temperature alloys, with a special emphasis on boiler steels.

Findings

High temperature corrosion and erosion‐corrosion are serious problems observed in steam‐powered electricity generation plants, gas turbines, internal combustion engines, fluidized bed combustors, industrial waste incinerators and recovery boilers in paper and pulp industries. These problems can be prevented by changing the material or altering the environment, or by separating the component surface from the environment. Corrosion prevention by the use of coatings for separating materials from the environment is gaining importance in surface engineering. Amongst various surface modifying techniques, thermal spraying has developed relatively rapidly due to the use of advanced coating formulations and improvements in coating application technology. One of the variants of thermal spraying, namely HVOF has gained popularity in recent times due to its flexibility for in‐situ applications and superior coating properties.

Research limitations/implications

This review covers mainly information that has been reported previously in the open literature, international journals and some well‐known textbooks.

Practical implications

The paper presents a concise summary of information for scientists and academics, planning to start their research work in the area of surface engineering.

Originality/value

This paper fulfils an identified information/resources need and offers practical help to an individual starting out on a career in the area of surface engineering for erosion‐corrosion and wear.

Details

Anti-Corrosion Methods and Materials, vol. 55 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 15 March 2013

Jiayuan Hu, Shun‐an Cao and Jianli Xie

The purpose of this paper is to explore the long‐term corrosion behavior of carbon steel in 3% NaCl solution and evaluate the effect of rust layer on the corrosion process.

Abstract

Purpose

The purpose of this paper is to explore the long‐term corrosion behavior of carbon steel in 3% NaCl solution and evaluate the effect of rust layer on the corrosion process.

Design/methodology/approach

The corrosion behavior of rusted carbon steel in 3% NaCl solution was studied by means of infrared spectroscopy (IR) and electrochemical impedance spectroscopy (EIS).

Findings

The results indicated that the corrosion of carbon steel was affected by chloride ion in initial immersion and then controlled by the rust layer. The rust layer consisted of a thin outer layer (γ‐FeOOH layer) and a thick inner layer (Fe3O4 layer). The outer rust layer facilitated the cathodic process via reduction of γ‐FeOOH, while the inner rust layer provided a large cathode area and oxygen could be reduced on its surface. As a result, the corrosion rate of carbon steel was determined by the limiting diffusion rate of oxygen and stabilized at a high value.

Originality/value

The corrosion model of rusted carbon steel in 3% NaCl solution was established. It is probable that the iron rust in all slightly acidic water with low alkalinity can promote the corrosion process via reduction of γ‐FeOOH. Anti‐corrosion measures for iron in this type of solutions should be aimed to reduce the promoting effect of rust layer on the metal corrosion. The NaCl solution prepared from tap water is more suitable for the substitution of artificial water than that prepared from deionized water.

Details

Anti-Corrosion Methods and Materials, vol. 60 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 April 1998

F. Roubani‐Kalantzopoulou, G. Patermarakis and H. Karayianni

The corrosion of Zn in both aerated by air (O2 + N2), and deaerated by N2, solutions of KNO3 at concentrations largely varying, 10‐5‐1 M, is studied. The corrosion process is…

Abstract

The corrosion of Zn in both aerated by air (O2 + N2), and deaerated by N2, solutions of KNO3 at concentrations largely varying, 10‐5‐1 M, is studied. The corrosion process is followed in time by potentiometry and the potential of Zn electrode (vs. calomel) vs. time plots is derived. In both cases, a transition period is observed until a steady state is achieved where the rate of Zn2+ and OH production becomes equal to the rate of Zn(OH)2 precipitate formation. In the aerated solutions the potential and corrosion rate decrease with time while in the deaerated solutions they pass successively through a minimum and a maximum before a steady state is achieved. By a suitable potentiometric analysis the results are explained. The most important factors found to be affecting the mechanism of corrosion process are presented. From the discovery of the mechanism and the factors affecting the Zn corrosion, predictions for promoting or slowing down the corrosion process may be derived.

Details

Anti-Corrosion Methods and Materials, vol. 45 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of over 10000