Search results

1 – 10 of 109
Article
Publication date: 21 February 2024

Shuliu Wang, Qianqian Liu, Jin Wang, Nana Chen, JunHang Chen, Jialiang Song, Xin Zhang and Kui Xiao

This study aims to investigate the role of aluminium (Al) in marine environment and the corrosion mechanism of galvalume coatings by conducting accelerated experiments and data…

Abstract

Purpose

This study aims to investigate the role of aluminium (Al) in marine environment and the corrosion mechanism of galvalume coatings by conducting accelerated experiments and data analysis.

Design/methodology/approach

Samples were subjected to accelerated corrosion for 136 days via salt spray tests to simulate the natural conditions of marine environment and consequently accelerate the experiments. Subsequently, the samples were examined using various test methods, such as EDS, scanning electron microscopy (SEM), X-ray diffraction (XRD) and electrochemical impedance spectroscopy (EIS), and the obtained data were analysed.

Findings

Galvalume coatings comprised interdigitated zinc (Zn)-rich and dendritic Al-rich phases. Corrosion was observed to begin with a Zn-rich phase. The primary components of the corrosion product film were Al2O3 and Zn5(OH)8Cl2·H2O. It was confirmed that the role of Al was to form a dense protective film, thereby successfully blocking the entry of corrosive media and protecting the iron substrate.

Originality/value

This study provides a clearer understanding of the corrosion mechanism and kinetics of galvalume coatings in a simulated marine environment. In addition, the role of Al, which is rarely mentioned in the literature, was investigated.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 23 January 2024

Evrim Baran Aydın, Eyüp Başaran, Sevgi Ateş and Reşit Çakmak

The aim of this study was to investigate the activity of 4-((4-((2-hydroxyethyl)(methyl)amino)benzylidene) amino)-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one (HEMAP), a…

Abstract

Purpose

The aim of this study was to investigate the activity of 4-((4-((2-hydroxyethyl)(methyl)amino)benzylidene) amino)-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one (HEMAP), a Schiff base synthesized and characterized for the first time, to the authors’ knowledge, as a novel inhibitor against corrosion of mild steel (MS) in hydrochloric acid solution.

Design/methodology/approach

HEMAP was characterized by some spectroscopic methods including High-Resolution Mass Spectrometry (HRMS), Proton Nuclear Magnetic Resonance (1H NMR), Carbon-13 (C13) nuclear magnetic resonance (13C NMR) and Fourier Transform Infrared Spectroscopy (FT-IR). Then, the inhibition efficiency of HEMAP on MS in a hydrochloric acid solution was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). To explain the inhibition mechanism, the surface charge, adsorption isotherms and thermodynamic parameters of MS in the inhibitor solution were studied.

Findings

EIS tests displayed that the highest inhibition efficiency was calculated approximately as 99.5% for 5 × 10−2 M HEMAP in 1 M HCl solution. The adsorption of HEMAP on the MS surface was found to be compatible with the Langmuir model isotherm. The thermodynamic parameter results showed that the standard free energy of adsorption of HEMAP on the MS surface was found to be more chemical than physical.

Originality/value

This study is important in terms of demonstrating the performance of the first synthesized HEMAP molecule as an inhibitor against the corrosion of MS in acidic media. EIS tests displayed that the highest inhibition efficiency was calculated approximately as 99.5% for 5 × 10−2 M HEMAP in 1 M HCl solution.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 8 January 2024

Yan Gao, Qiubo Li, Wei Wu, Qiwei Wang, Yizhe Su, Junxi Zhang, Deyuan Lin and Xiaojian Xia

The purpose of this paper is to study the effect of current-carrying condition on the electrochemical process and atmospheric corrosion behavior of the commercial aluminum alloys.

Abstract

Purpose

The purpose of this paper is to study the effect of current-carrying condition on the electrochemical process and atmospheric corrosion behavior of the commercial aluminum alloys.

Design/methodology/approach

Potentiodynamic polarization tests were performed to study the electrochemical process of the aluminum alloys. Salt spray tests and weight loss tests were carried out to study the atmospheric corrosion behavior. The corrosion morphology of the alloys was observed, and the products were analyzed.

Findings

The corrosion process of four aluminum alloys was accelerated in the current-carrying condition. Moreover, the acceleration effect on A2024 and A7075 was much stronger than that on A1050 and A5052. The main factors would be the differences in microstructure and corrosion resistance between these alloys. As the carried current increased, the corrosion rate and corrosion current density of the aluminum alloys gradually increased, with the protection of the corrosion product film decreasing linearly.

Originality/value

This is a recent study on the corrosion behavior of conductors under current-carrying condition, which truly understands the corrosion status of power grid materials. Relevant results provide support for the corrosion protection and safe service of aluminum alloy in power systems.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 April 2024

Liang Ma, Qiang Wang, Haini Yang, Da Quan Zhang and Wei Wu

The aim of this paper is to solve the toxic and harmful problems caused by traditional volatile corrosion inhibitor (VCI) and to analyze the effect of the layered structure on the…

Abstract

Purpose

The aim of this paper is to solve the toxic and harmful problems caused by traditional volatile corrosion inhibitor (VCI) and to analyze the effect of the layered structure on the enhancement of the volatile corrosion inhibition prevention performance of amino acids.

Design/methodology/approach

The carbon dots-montmorillonite (DMT) hybrid material is prepared via hydrothermal process. The effect of the DMT-modified alanine as VCI for mild steel is investigated by volatile inhibition sieve test, volatile corrosion inhibition ability test, electrochemical measurement and surface analysis technology. It demonstrates that the DMT hybrid materials can improve the ability of alanine to protect mild steel against atmospheric corrosion effectively. The presence of carbon dots enlarges the interlamellar spacing of montmorillonite and allows better dispersion of alanine. The DMT-modified alanine has higher volatilization ability and an excellent corrosion inhibition of 85.3% for mild steel.

Findings

The DMT hybrid material provides a good template for the distribution of VCI, which can effectively improve the vapor-phase antirust property of VCI.

Research limitations/implications

The increased volatilization rate also means increased VCI consumption and higher costs.

Practical implications

Provides a new way of thinking to replace the traditional toxic and harmful VCI.

Originality/value

For the first time, amino acids are combined with nano laminar structures, which are used to solve the problem of difficult volatilization of amino acids.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 16 February 2024

Xiaowen Chen, Wanlin Xie, Song Tang, Meng Zhang, Hao Song, Qingzheng Ran and Defen Zhang

The purpose of this study is to examine the impact of MoS2 on the microstructure and characteristics of micro-arc oxidized (MAO) ceramic coatings created on ZK60 magnesium alloy…

Abstract

Purpose

The purpose of this study is to examine the impact of MoS2 on the microstructure and characteristics of micro-arc oxidized (MAO) ceramic coatings created on ZK60 magnesium alloy through the addition of varying concentrations of MoS2 particles to the electrolyte, aiming to enhance the corrosion resistance of magnesium alloy.

Design/methodology/approach

The surface morphology, roughness and phase composition of the coatings were analyzed using scanning electron microscopy, a hand-held roughness tester and an X-ray diffractometer, respectively, and the corrosion resistance of the MAO coatings prepared by the addition of different contents of MoS2 particles was tested and analyzed using an electrochemical workstation.

Findings

The results demonstrate that MoS2/MgO composite coatings have been successfully prepared on the surface of magnesium alloys through micro-arc oxidation. Furthermore, the corrosion resistance of the ZK60 magnesium alloy prepared with the addition of 1.0 g/L MoS2 was the best compared to the other samples.

Originality/value

MoS2 particles were able to penetrate the coatings successfully during the micro-arc oxidation process, acting as a barrier in the micropores to prevent the corrosion medium from touching the surface, thus improving the corrosion resistance of the sample. The electrochemical workstation was used to study the corrosion resistance of the MoS2/MAO coating on the ZK60 magnesium alloy.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 22 April 2024

Sixian Rao, Changwei Zhang, Fei Zhao, Lei Bao and Xiaoyi Wang

This paper aims to explore the influence of corrosion-deformation interactions (CDI) on the corrosion behavior and mechanisms of 316LN under applied tensile stresses.

Abstract

Purpose

This paper aims to explore the influence of corrosion-deformation interactions (CDI) on the corrosion behavior and mechanisms of 316LN under applied tensile stresses.

Design/methodology/approach

Corrosion of metals would be aggravated by CDI under applied stress. Notably, the presence of nitrogen in 316LN austenitic stainless steel (SS) would enhance the corrosion resistance compared to the nitrogen-absent 316L SS. To clarify the CDI behaviors, electrochemical corrosion experiments were performed on 316LN specimens under different applied stress levels. Complementary analyses, including three-dimensional morphological examinations by KH-7700 digital microscope and scanning electron microscopy coupled with energy dispersive spectroscopy, were conducted to investigate the macroscopic and microscopic corrosion morphology and to characterize the composition of corrosion products within pits. Furthermore, ion chromatography was used to analyze the solution composition variations after immersion corrosion tests of 316LN in a 6 wt.% FeCl3 solution compared to original FeCl3 solution. Electrochemical experiment results revealed the linear decrease in free corrosion potential with increasing applied stress. Electrochemical impedance spectroscopy results indicated that high tensile stress level damaged the integrity of passivation film, as evidenced by the remarkable reduction in electrochemical impedance. Ion chromatography analyses proved the concentrations increase of NO3 and NH4+ ion concentrations in the corrosion media after corrosion tests.

Findings

The enhanced corrosion resistance of 316LN SS is attributable to the presence of nitrogen.

Research limitations/implications

The scope of this study is confined to the influence of tensile stress on the electrochemical corrosion of 316LN at ambient temperatures; it does not encompass the potential effects of elevated temperatures or compressive stress.

Practical implications

The resistance to stress electrochemical corrosion in SS may be enhanced through nitrogen alloying.

Originality/value

This paper presents a systematic investigation into the stress electrochemical corrosion of 316LN, marking the inaugural study of its impact on corrosion behaviors and underlying mechanisms.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 6 February 2024

Shuangjiu Deng, Chang Li, Xing Han, Menghui Yu and Han Sun

The restoration and strengthening of QT600 is an industry bottleneck challenge. The Co-12 cladding layer has great wear and corrosion resistance. The purpose of this paper is to…

Abstract

Purpose

The restoration and strengthening of QT600 is an industry bottleneck challenge. The Co-12 cladding layer has great wear and corrosion resistance. The purpose of this paper is to quantitatively reveal the transient evolution law of the corrosion process of Co-12 cladding layer on QT600 surface.

Design/methodology/approach

In this paper, a three-dimensional numerical model of the corrosion process of Co-12 cladding layer by QT600 laser cladding is established. The interaction between pitting pits and corrosion medium is considered to reveal the transient evolution of ion concentration, electrode potential, pH and corrosion rate at different locations.

Findings

The calculation shows that the ion concentration in pitting pit changes Cl>Co2+>Na+, pH value decreases from top to bottom and corrosion rate at bottom is greater than that at top. The electrochemical corrosion test of Co-12 cladding layer was carried out. It is shown that the current density of QT600 increases by an order of magnitude compared to the Co-12 cladding layer, and the corrosion rate is 4.862 times higher than that of the cladding layer.

Originality/value

The results show that Co-12 cladding layer has great corrosion resistance, which provides an effective way for QT600 protection.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 29 January 2024

Meigui Yin, Lei Zhang and Longxiang Huang

The purpose of this paper is to study the effect of surface salt spray duration on the fretting wear and electrochemical corrosion behaviors of Inconel 690 alloy.

Abstract

Purpose

The purpose of this paper is to study the effect of surface salt spray duration on the fretting wear and electrochemical corrosion behaviors of Inconel 690 alloy.

Design/methodology/approach

A high-temperature steam generator was applied to salt spray test samples, a fretting wear rig was used to realize the damage behavior tests, an electrochemical workstation was applied to analysis the changes of each sample’s corrosion dynamic response before and after fretting wear.

Findings

The thickness of the oxide film that formed on sample surface was increased with the salt spray duration, and somewhat it could act as lubrication during the fretting wear process; however, the corrosive chloride would accelerate the fretting mechanical damage behavior.

Originality/value

In a salt steam spray condition, the fretting tribo-corrosion behaviors of Inconel 690 alloy surface was studied.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 23 February 2024

Guangwei Liang, Zhiming Gao, Cheng-Man Deng and Wenbin Hu

The purpose of this study is to reveal the effect of nano-Al2O3 particle addition on the nucleation/growth kinetics, microhardness, wear resistance and corrosion resistance of…

Abstract

Purpose

The purpose of this study is to reveal the effect of nano-Al2O3 particle addition on the nucleation/growth kinetics, microhardness, wear resistance and corrosion resistance of Co–P–xAl2O3 nanocomposite plating.

Design/methodology/approach

The kinetics and properties of Co–P–xAl2O3 nanocomposite plating prepared by electroplating were investigated by electrochemical measurements, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Vickers microhardness measurement, SRV5 friction and wear tester and atomic force microscopy.

Findings

A 12 g/L nano-Al2O3 addition in the plating solution can transform the nucleation/growth kinetics of the plating from the 3D progressive model to the 3D instantaneous model. The microhardness of the plating increased with the increase of nano-Al2O3 content in plating. The wear resistance of the plating did not adhere strictly to Archard’s law. An even and denser corrosion product film was generated due to the finer grains, with a high corrosion resistance.

Originality/value

The effect of different nano-Al2O3 addition on the nucleation/growth kinetics and properties of Co–P–xAl2O3 nanocomposite plating was investigated, and an anticorrosion mechanism of Co–P–xAl2O3 nanocomposite plating was proposed.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 5 February 2024

Dongsheng Wang, Xiaohan Sun, Yingchang Jiang, Xueting Chang and Xin Yonglei

Stainless-clad bimetallic steels (SCBS) are widely investigated in some extremely environmental applications areas, such as polar sailing area and tropical oil and gas platforms…

Abstract

Purpose

Stainless-clad bimetallic steels (SCBS) are widely investigated in some extremely environmental applications areas, such as polar sailing area and tropical oil and gas platforms areas, because of their excellent anticorrosion performance and relatively lower production costs. However, the properties of SCBS, including the mechanical strength, weldability and the anticorrosion behavior, have a direct relation with the manufacturing process and can affect their practical applications. This paper aims to review the application and the properties requirements of SCBS in marine environments to promote the application of this new material in more fields.

Design/methodology/approach

In this paper, the manufacturing process, welding and corrosion-resistant properties of SCBS were introduced systematically by reviewing the related literatures, and some results of the authors’ research group were also introduced briefly.

Findings

Different preparation methods, such as rolling composite, casting rolling composite, explosive composite, laser cladding and plasma arc cladding, as well as the process parameters, including the vacuum degree, rolling temperature, rolling reduction ratio, volume ratios of liquid to solid, explosive ratio and the heat treatment, influenced a lot on the properties of the SCBS through changing the interface microstructures. Otherwise, the variations in rolling temperature, pass, reduction and the grain size of clad steel also brought the dissimilarities of the mechanical properties, microhardness, bonding strength and toughness. Another two new processes, clad teeming method and interlayer explosive welding, deserve more attention because of their excellent microstructure control ability. The superior corrosion resistance of SCBS can alleviate the corrosion problem in the marine environment and prolong the service life of the equipment, but the phenomenon of galvanic corrosion should be noted as much as possible. The high dilution rate, welding process specifications and heat treatment can weaken the intergranular corrosion resistance in the weld area.

Originality/value

This paper summarizes the application of SCBS in marine environments and provides an overview and reference for the research of stainless-clad bimetallic steel.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 109