Search results

1 – 10 of 28
Article
Publication date: 25 May 2022

Nivin M. Ahmed, Mostafa G. Mohamed and Walaa M. Abd El-Gawad

Long time ago, multistructured materials showed great interest being considered as the bridge between bulk and atomic materials. Core-shell particles are kind of composite…

Abstract

Purpose

Long time ago, multistructured materials showed great interest being considered as the bridge between bulk and atomic materials. Core-shell particles are kind of composite materials that refer to multilayered structures with a core totally surrounded by shell(s) (onion-like structure). These new structures can offer an advantage of applying new adjustable parameters like shape, stoichiometry and chemical ordering, in addition to the opportunity of tailoring more complexed structures for different applications. Recently it was found that these structures can be tuned and taken for more advanced path with novel structures formed of core surrounded by multishells. The purpose of this study is to study the effect of the new anticorrosive pigments with its mutual shells and how each shell affects the performance of the pigment in protecting the metal and which shell will be more relevant in its effect.

Design/methodology/approach

The prepared pigments were characterized using X-ray fluorescence, X-ray diffraction, TEM and SEM/EDX to prove their core-shell structure, and then they were integrated in coating formulations to evaluate their anticorrosive activity using immersion test and electrochemical impedance spectroscopy (EIS).

Findings

The results showed that the prepared core-shell pigments possess a lot of unique characteristics and can offer improved anticorrosive performance in the generated coatings.

Originality/value

Core-mutual shells structured pigments were prepared for improving the corrosion resistivity of the organic coatings as a new trend in anticorrosive pigments.

Details

Pigment & Resin Technology, vol. 52 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 13 September 2022

Ali Noroozian, Babak Amiri and Mehrdad Agha Mohammad Ali Kermani

Movies critics believe that the diversity of Iranian cinematic genres has decreased over time. The paper aims to answer the following questions: What is the impact of the…

Abstract

Purpose

Movies critics believe that the diversity of Iranian cinematic genres has decreased over time. The paper aims to answer the following questions: What is the impact of the continuous cooperation between the key nodes on the audience's taste, uniformity of the cinematic genres and the box office? Is there any relationship between the importance of actors in the actors' network and their popularity?

Design/methodology/approach

In the artistic world, artists' relationships lead to a network that affects individuals' commercial or artistic success and defines the artwork's value. To study the issue that the diversity of Iranian cinematic genres has decreased over time, the authors utilized social network analysis (SNA), in which every actor is considered a node, and its collaboration with others in the same movies is depicted via edges. After preparing the desired dataset, networks were generated, and metrics were calculated. First, the authors compared the structure of the network with the box office. The results illustrated that the network density growth negatively affects box office. Second, network key nodes were identified, their relationships with other actors were inspected using the Apriori algorithm to examine the density cause and the cinematic genre of key nodes, and their followers were investigated. Finally, the relationship between the actors' Instagram follower count and their importance in the network structure was analyzed to answer whether the generated network is acceptable in society.

Findings

The social problem genre has stabilized due to continuous cooperation between the core nodes because network density negatively impacts the box office. As well as, the generated network in the cinema is acceptable by the audience because there is a positive correlation between the importance of actors in the network and their popularity.

Originality/value

The novelty of this paper is investigating the issue raised in the cinema industry and trying to inspect its aspects by utilizing the SNA to deepen the cinematic research and fill the gaps. This study demonstrates a positive correlation between the actors' Instagram follower count and their importance in the network structure, indicating that people follow those central in the actors' network. As well as investigating the network key nodes with a heuristic algorithm using coreness centrality and analyzing their relationships with others through the Apriori algorithm. The authors situated the analysis using a novel and original dataset from the Iranian actors who participated in the Fajr Film Festival from 1998 to 2020.

Article
Publication date: 21 November 2023

Lochan Singh and Vijay Singh Sharanagat

Nature and occurrence of food-borne pathogens in raw and processed food products evolved greatly in the past few years due to new modes of transmission and resistance build-up…

147

Abstract

Purpose

Nature and occurrence of food-borne pathogens in raw and processed food products evolved greatly in the past few years due to new modes of transmission and resistance build-up against sundry micro-/macro-environmental conditions. Assurance of food health and safety thus gained immense importance, for which bio-sensing technology proved very promising in the detection and quantification of food-borne pathogens. Considering the importance, different studies have been performed, and different biosensors have been developed. This study aims to summarize the different biosensors used for the deduction of food-borne pathogens.

Design/methodology/approach

The present review highlights different biosensors developed apropos to food matrices, factors governing their selection, their potential and applicability. The paper discusses some related key challenges and constraints and also focuses on the needs and future research prospects in this field.

Findings

The shift in consumers’ and industries’ perceptions directed the further approach to achieve portable, user and environmental friendly biosensing techniques. Despite of these developments, it was still observed that the comparison among the different biosensors and their categories proved tedious on a single platform; since the food matrices tested, pathogen detected or diagnosed, time of detection, etc., varied greatly and very few products have been commercially launched. Conclusively, a challenge lies in front of food scientists and researchers to maintain pace and develop techniques for efficiently catering to the needs of the food industry.

Research limitations/implications

Biosensors deduction limit varied with the food matrix, type of organism, material of biosensors’ surface, etc. The food matrix itself consists of complex substances, and various types of food are available in nature. Considering the diversity of food there is a need to develop a universal biosensor that can be used for all the food matrices for a pathogen. Further research is needed to develop a pathogen-specific biosensor that can be used for all the food products that may have accuracy to eliminate the traditional method of deduction.

Originality/value

The present paper summarized and categorized the different types of biosensors developed for food-borne pathogens.

Graphical abstract

Details

Nutrition & Food Science , vol. 54 no. 1
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 21 February 2024

Bahareh Babaie, Mohsen Najafi and Maryam Ataeefard

Toner is a crucial dry colorant composite used in printing based on the electrophotographic process. The quality of printed images is greatly influenced by the toner production…

Abstract

Purpose

Toner is a crucial dry colorant composite used in printing based on the electrophotographic process. The quality of printed images is greatly influenced by the toner production method and material formulation. Chemically in situ polymerization methods are currently preferred. This paper aims to optimize the characteristics of a composite produced through emulsion polymerization using common raw materials for electrophotographic toner production.

Design/methodology/approach

Emulsion polymerization provides the possibility to optimize the physical and color properties of the final products. Response surface methodology (RSM) was used to optimize variables affecting particle size (PS), PS distribution (PSD), glass transition temperature (Tg°C), color properties (ΔE) and monomer conversion. Box–Behnken experimental design with three levels of styrene and butyl acrylate monomer ratios, carbon black pigment and sodium dodecyl sulfate surfactant was used for RSM optimization. Additionally, thermogravimetric analysis and surface morphology of composite particles were examined.

Findings

The results indicated that colorants with small PS, narrow PSDs, spherical shape morphology, acceptable thermal and color properties and a high percentage of conversion could be easily prepared by optimization of material parameters in this method. The anticipated outcome of the present inquiry holds promise as a guiding beacon toward the realization of electrographic toner of superior quality and exceptional efficacy, a vital factor for streamlined mass production.

Originality/value

To the best of the authors’ knowledge, for the first time, material parameters were evaluated to determine their impact on the characteristics of emulsion polymerized toner composites.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 January 2024

Hongya Niu, Chunmiao Wu, Xinyi Ma, Xiaoteng Ji, Yuting Tian and Jinxi Wang

This study aims to better understand the morphological characteristics of single particle and the health risk characteristics of heavy metals in PM2.5 in different functional…

Abstract

Purpose

This study aims to better understand the morphological characteristics of single particle and the health risk characteristics of heavy metals in PM2.5 in different functional areas of Handan City.

Design/methodology/approach

High resolution transmission electron microscopy was used to observe the aerosol samples collected from different functional areas of Handan City. The morphology and size distribution of the particles collected on hazy and clear days were compared. The health risk evaluation model was applied to evaluate the hazardous effects of particles on human health in different functional areas on hazy days.

Findings

The results show that the particulate matter in different functional areas is dominated by spherical particles in different weather conditions. In particular, the proportion of spherical particles exceeds 70% on the haze day, and the percentage of soot aggregates increases significantly on the clear day. The percentage of each type of particle in the teaching and living areas varied less under different weather conditions. Except for the industrial area, the size distribution of each type of particle in haze samples is larger than that on the clear day. Spherical particles contribute more to the small particle size segment. Soot aggregate and other shaped particles contribute more to the large size segment. The mass concentrations of hazardous elements (HEs) in PM2.5 in different functional areas on consecutive haze pollution days were illustrated as industrial area > traffic area > living area > teaching area. Compared with the other functional areas, the teaching area had the lowest noncarcinogenic risk of HEs. The lifetime carcinogenic risk values of Cr and As elements in each functional area have exceeded residents’ threshold levels and are at high risk of carcinogenicity. Among the four functional areas, the industrial area has the highest carcinogenic and noncarcinogenic risks. But the effects of HEs on human health in the other functional areas should also be taken seriously and continuously controlled.

Originality/value

The significance of the study is to further understand the morphological characteristics of single particles and the health risks of heavy metals in different functional areas of Handan City. the authors hope to provide a reference for other coal-burning industrial cities to develop plans to improve air quality and human respiratory health.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 April 2024

Nibu Babu Thomas, Lekshmi P. Kumar, Jiya James and Nibu A. George

Nanosensors have a wide range of applications because of their high sensitivity, selectivity and specificity. In the past decade, extensive and pervasive research related to…

Abstract

Purpose

Nanosensors have a wide range of applications because of their high sensitivity, selectivity and specificity. In the past decade, extensive and pervasive research related to nanosensors has led to significant progress in diverse fields, such as biomedicine, environmental monitoring and industrial process control. This led to better and more efficient detection and monitoring of physical and chemical properties at better resolution, opening new horizons in the development of novel technologies and applications for improved human health, environment protection, enhanced industrial processes, etc.

Design/methodology/approach

In this paper, the authors discuss the application of citation network analysis in the field of nanosensor research and development. Cluster analysis was carried out using papers published in the field of nanomaterial-based sensor research, and an in-depth analysis was carried out to identify significant clusters. The purpose of this study is to provide researchers to identify a pathway to the emerging areas in the field of nanosensor research. The authors have illustrated the knowledge base, knowledge domain and knowledge progression of nanosensor research using the citation analysis based on 3,636 Science Citation Index papers published during the period 2011 to 2021.

Findings

Among these papers, the bibliographic study identified 809 significant research publications, 11 clusters, 556 research sector keywords, 1,296 main authors, 139 referenced authors, 63 nations, 206 organizations and 42 journals. The authors have identified single quantum dot (QD)-based nanosensor for biological applications, carbon dot-based nanosensors, self-powered triboelectric nanogenerator-based nanosensor and genetically encoded nanosensor as the significant research hotspots that came to the fore in recent years. The future trend in nanosensor research might focus on the development of efficient and cost-effective designs for the detection of numerous environmental pollutants and biological molecules using mesostructured materials and QDs. It is also possible to optimize the detection methods using theoretical models, and generalized gradient approximation has great scope in sensor development.

Research limitations/implications

The future trend in nanosensor research might focus on the development of efficient and cost-effective designs for the detection of numerous environmental pollutants and biological molecules using mesostructured materials and QDs. It is also possible to optimize the detection methods using theoretical models, and generalized gradient approximation has great scope in sensor development.

Originality/value

This is a novel bibliometric analysis in the area of “nanomaterial based sensor,” which is carried out in CiteSpace software.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 16 October 2023

Reetu Yadav, Mamta Kushwah, Anna Nikolaevna Berlina and Mulayam Singh Gaur

The purpose of this study is determination of cadmium using silver-gold bimetallic nanoparticles (Ag-Au BMNPs) and an aptamer modified glassy carbon electrode.

Abstract

Purpose

The purpose of this study is determination of cadmium using silver-gold bimetallic nanoparticles (Ag-Au BMNPs) and an aptamer modified glassy carbon electrode.

Design/methodology/approach

The maximum response of modified electrode was obtained with, 50 mV pulse amplitude, 20 mV/s scan rate in phosphate buffer of pH 4.0. Ag-Au BMNPs, as the mediators improved electron transmit during the entire electron transfer process and the aptasensor response. Herein, the authors used aptamer as the capture probe to prepare an aptasensor with enhanced stability.

Findings

The proposed aptasensor exhibited a wide linearity to cadmium in the range of 0.001–0.100 µg/L with a low detection limit of 0.005×10−3 µg/L. The glassy carbon electrodes with Ag-Au BMNPs showed a lower detection limit.

Originality/value

This aptasensor has good reproducibility, stability and repeatability and is cost-effective to regenerate. The specificity and selectivity of the novel modified electrode is tested in the presence of other interfering metal ions such as Fe2+, Mn2+, Mg2+, Sb3+ and Bi3+. The aptasensor shows 10 times more sensitivity and selectivity for Cd2+ ions.

Details

Sensor Review, vol. 43 no. 5/6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 26 March 2024

Sajad Pirsa and Fahime Purghorbani

In this study, an attempt has been made to collect the research that has been done on the construction and design of the H2O2 sensor. So far, many efforts have been made to…

Abstract

Purpose

In this study, an attempt has been made to collect the research that has been done on the construction and design of the H2O2 sensor. So far, many efforts have been made to quickly and sensitively determine H2O2 concentration based on different analytical principles. In this study, the importance of H2O2, its applications in various industries, especially the food industry, and the importance of measuring it with different techniques, especially portable sensors and on-site analysis, have been investigated and studied.

Design/methodology/approach

Hydrogen peroxide (H2O2) is a very simple molecule in nature, but due to its strong oxidizing and reducing properties, it has been widely used in the pharmaceutical, medical, environmental, mining, textile, paper, food production and chemical industries. Sensitive, rapid and continuous detection of H2O2 is of great importance in many systems for product quality control, health care, medical diagnostics, food safety and environmental protection.

Findings

Various methods have been developed and applied for the analysis of H2O2, such as fluorescence, colorimetry and electrochemistry, among them, the electrochemical technique due to its advantages in simple instrumentation, easy miniaturization, sensitivity and selectivity.

Originality/value

Monitoring the H2O2 concentration level is of practical importance for academic and industrial purposes. Edible oils are prone to oxidation during processing and storage, which may adversely affect oil quality and human health. Determination of peroxide value (PV) of edible oils is essential because PV is one of the most common quality parameters for monitoring lipid oxidation and oil quality control. The development of cheap, simple, fast, sensitive and selective H2O2 sensors is essential.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 January 2024

Xingxing Li, Shixi You, Zengchang Fan, Guangjun Li and Li Fu

This review provides an overview of recent advances in electrochemical sensors for analyte detection in saliva, highlighting their potential applications in diagnostics and health…

Abstract

Purpose

This review provides an overview of recent advances in electrochemical sensors for analyte detection in saliva, highlighting their potential applications in diagnostics and health care. The purpose of this paper is to summarize the current state of the field, identify challenges and limitations and discuss future prospects for the development of saliva-based electrochemical sensors.

Design/methodology/approach

The paper reviews relevant literature and research articles to examine the latest developments in electrochemical sensing technologies for saliva analysis. It explores the use of various electrode materials, including carbon nanomaterial, metal nanoparticles and conducting polymers, as well as the integration of microfluidics, lab-on-a-chip (LOC) devices and wearable/implantable technologies. The design and fabrication methodologies used in these sensors are discussed, along with sample preparation techniques and biorecognition elements for enhancing sensor performance.

Findings

Electrochemical sensors for salivary analyte detection have demonstrated excellent potential for noninvasive, rapid and cost-effective diagnostics. Recent advancements have resulted in improved sensor selectivity, stability, sensitivity and compatibility with complex saliva samples. Integration with microfluidics and LOC technologies has shown promise in enhancing sensor efficiency and accuracy. In addition, wearable and implantable sensors enable continuous, real-time monitoring of salivary analytes, opening new avenues for personalized health care and disease management.

Originality/value

This review presents an up-to-date overview of electrochemical sensors for analyte detection in saliva, offering insights into their design, fabrication and performance. It highlights the originality and value of integrating electrochemical sensing with microfluidics, wearable/implantable technologies and point-of-care testing platforms. The review also identifies challenges and limitations, such as interference from other saliva components and the need for improved stability and reproducibility. Future prospects include the development of novel microfluidic devices, advanced materials and user-friendly diagnostic devices to unlock the full potential of saliva-based electrochemical sensing in clinical practice.

Details

Sensor Review, vol. 44 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 15 September 2022

Saima Habib, Farzana Kishwar and Zulfiqar Ali Raza

The purpose of this study is to apply silver nanoparticles on the cellulosic fabric via a green cross-linking approach to obtain antibacterial textiles. The cellulosic fabrics may…

Abstract

Purpose

The purpose of this study is to apply silver nanoparticles on the cellulosic fabric via a green cross-linking approach to obtain antibacterial textiles. The cellulosic fabrics may provide an ideal enclave for microbial growth due to their biodegradable nature and retention of certain nutrients and moisture usually required for microbial colonization. The application of antibacterial finish on the textile surfaces is usually done via synthetic cross-linkers, which, however, may cause toxic effects and halt the biodegradation process.

Design/methodology/approach

Herein, we incorporated citrate moieties on the cellulosic fabric as eco-friendly crosslinkers for the durable and effective application of nanosilver finish. The nanosilver finish was then applied on the citrate-treated cellulosic fabric under the pad-dry-cure method and characterized the specimens for physicochemical, textile and antibacterial properties.

Findings

The results expressed that the as-prepared silver particles possessed spherical morphology with their average size in the nano range and zeta potential being −40 ± 5 mV. The results of advanced analytical characterization demonstrated the successful application of nanosilver on the cellulosic surface with appropriate dispersibility.

Practical implications

The nanosilver-treated fabric exhibited appropriate textile and comfort and durable broad-spectrum antibacterial activity.

Originality/value

The treated cellulosic fabric expressed that the cross-linking, crystalline behavior, surface chemistry, roughness and amphiphilicity could affect some of its comfort and textile properties yet be in the acceptable range for potential applications in medical textiles and environmental sectors.

Details

Pigment & Resin Technology, vol. 53 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 28