Search results

1 – 10 of 11
Article
Publication date: 18 January 2023

Amirul Syafiq, Farah Khaleda Mohd Zaini, Vengadaesvaran Balakrishnan and Nasrudin Abd. Rahim

The purpose of this paper is to introduce the simple synthesis process of thermal-insulation coating by using three different nanoparticles, namely, nano-zinc oxide (ZnO)…

Abstract

Purpose

The purpose of this paper is to introduce the simple synthesis process of thermal-insulation coating by using three different nanoparticles, namely, nano-zinc oxide (ZnO), nano-tin dioxide (SnO2) and nano-titanium dioxide (TiO2), which can reduce the temperature of solar cells.

Design/methodology/approach

The thermal-insulation coating is designed using sol-gel process. The aminopropyltriethoxysilane/methyltrimethoxysilane binder system improves the cross-linking between the hydroxyl groups, -OH of nanoparticles. The isopropyl alcohol is used as a solvent medium. The fabrication method is a dip-coating method.

Findings

The prepared S1B1 coating (20 Wt.% of SnO2) exhibits high transparency and great thermal insulation property where the surface temperature of solar cells has been reduced by 13°C under 1,000 W/m2 irradiation after 1 h. Meanwhile, the Z1B2 coating (20 Wt.% of ZnO) reduced the temperature of solar cells by 7°C. On the other hand, the embedded nanoparticles have improved the fill factor of solar cells by 0.2 or 33.33%.

Research limitations/implications

Findings provide a significant method for the development of thermal-insulation coating by a simple synthesis process and low-cost materials.

Practical implications

The thermal-insulation coating is proposed to prevent exterior heat energy to the inside solar panel glass. At the same time, it can prevent excessive heating on the solar cell’s surface, later improves the efficiency of solar cell.

Originality/value

This study presents a the novel method to develop and compare the thermal-insulation coating by using various nanoparticles, namely, nano-TiO2, nano-SnO2 and nano-ZnO at different weight percentage.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 7 November 2023

Rania Abdel Gwad Eloriby and Hamdy Mohamed Mohamed

This study aims to assess the efficacy of nano-alumina (nano-Al2O3) in improving the performance of epoxy adhesives used to assemble archaeological glass. The conservators face a…

Abstract

Purpose

This study aims to assess the efficacy of nano-alumina (nano-Al2O3) in improving the performance of epoxy adhesives used to assemble archaeological glass. The conservators face a significant problem in assembling this type of artifact. Therefore, the assembling process is considered one of the important stages that must be taken care of to preserve these artifacts from damage and loss.

Design/methodology/approach

To evaluate the stability of adhesives, the samples were subjected to artificial aging under varying environmental conditions. Some investigative techniques and mechanical testing were used in this study to evaluate the selected materials. It includes a transmission electron microscope, X-ray diffraction, visual assessment, digital microscope, scanning electron microscopy (SEM), color change and tensile strength test.

Findings

The visual evaluation and the digital microscope results showed that the epoxy/nano-Al2O3 greatly resisted artificial aging. Although slight yellowing was present, it did not significantly affect the general appearance of the samples. On the other hand, the pure epoxy sample showed cracks of different sizes on its surface due to aging, as evidenced by SEM examination. Furthermore, epoxy/nano-Al2O3 has a better tensile strength (11.27 MPa) and slight color change (ΔE = 2.06).

Originality/value

The main objective of the experimental study was to identify appropriate adhesive materials that possess key properties such as non-yellowing and improved tensile strength by conducting various tests and evaluations. Ultimately, the goal was to identify materials that could serve as effective adhesives for assembling the archaeological glass.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 November 2021

Dayanand Bhaurao Jadhav and Rajendra D. Kokate

Renewable energy alternatives and nanoscale materials have gained huge attention in recent years due to the problems associated with fossil fuels. The recyclable battery is one of…

Abstract

Purpose

Renewable energy alternatives and nanoscale materials have gained huge attention in recent years due to the problems associated with fossil fuels. The recyclable battery is one of the recent developments to address the energy requirement issues. In this work, the development of nanoscale materials is focused on using green synthesis methods to address the energy requirements of hybrid electric vehicles.

Design/methodology/approach

The current research focuses on developing metal oxide nanoscale materials (NANO-SMs). The Zno-Aloe vera NANO-SM is prepared using the green synthesis method. The developed nanoscale materials are characterized using analysis methods like FESEM, TEM, XRD and FTIR.

Findings

The average size of ZnO-Aloe vera mono-crystalline was recorded as 60–70 nm/Hexagonal shape. The nanoscale materials are used for the detection of LPG gases. The sensitivity observed was 48%. The response time and recovery time were recorded as 8–10 s and 230–250 s, respectively. The average size of SnO2-green papaya leaves poly-crystalline was recorded as 10–20 nm/powder form.

Originality/value

Nanoscale materials are developed using green synthesis methods for hybrid vehicle applications. The nanoscale materials are used for the detection of harmful gases in hybrid vehicles.

Details

International Journal of Intelligent Unmanned Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 24 April 2024

Vahid Ahmadi, Seyed Mohammad Ali Hosseini, Effat Jamalizadeh and Razie Naghizade

This paper aims to investigate the corrosion resistance of two types of coatings – one is ceria sol coating and the other is ceria sol coating modified by ZnO nanoparticles on…

Abstract

Purpose

This paper aims to investigate the corrosion resistance of two types of coatings – one is ceria sol coating and the other is ceria sol coating modified by ZnO nanoparticles on 7075 aluminum alloy in 3.5% NaCl solution.

Design/methodology/approach

Aluminum alloys were dipped into ceria sol and ceria sol modified by ZnO nanoparticles separately and removed after 10 min from the solutions and dried at 110°C for 30 min and heated at 500 °C for 30 min to form the coatings. The coatings have been characterized by using field emission scanning electron microscopy (FE-SEM), electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The EIS tests were performed in a corrosive solution of 3.5% NaCl.

Findings

The results showed that the coating of ceria sol modified by ZnO nanoparticles has higher corrosion resistance than the ceria sol coating and the bare sample. Also, the best efficiency is related to aluminum sample immersion after 1 h in NaCl corrosive solution for coating modified by ZnO nanoparticles.

Originality/value

In this research, the modification of ceria sol coating by ZnO nanoparticles had an effect on improving the corrosion behavior of aluminum alloy. It is also understood that modification of coatings is an effective parameter on corrosion resistance.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 19 April 2024

Hoda Sabry Sabry Othman, Salwa H. El-Sabbagh and Galal A. Nawwar

This study aims to investigate the behavior of the green biomass-derived copper (lignin/silica/fatty acids) complex, copper lignin/silica/fatty acids (Cu-LSF) complex, when…

Abstract

Purpose

This study aims to investigate the behavior of the green biomass-derived copper (lignin/silica/fatty acids) complex, copper lignin/silica/fatty acids (Cu-LSF) complex, when incorporated into the nonpolar ethylene propylene diene (EPDFM) rubber matrix, focusing on its reinforcing and antioxidant effect on the resulting EPDM composites.

Design/methodology/approach

The structure of the prepared EPDM composites was confirmed by Fourier-transform infrared spectroscopy, and the dispersion of the additive fillers and antioxidants in the EPDM matrix was investigated using scanning electron microscopy. Also, the rheometric characteristics, mechanical properties, swelling behavior and thermal gravimetric analysis of all the prepared EPDM composites were explored as well.

Findings

Results revealed that the Cu-LSF complex dispersed well in the nonpolar EPDM rubber matrix, in thepresence of coupling system, with enhanced Cu-LSF-rubber interactions and increased cross-linking density, which reflected on the improved rheological and mechanical properties of the resulting EPDM composites. From the various investigations performed in the current study, the authors can suggest 7–11 phr is the optimal effective concentration of Cu-LSF complex loading. Interestingly, EPDM composites containing Cu-LSF complex showed better antiaging performance, thermal stability and fluid resistance, when compared with those containing the commercial antioxidants (2,2,4-trimethyl-1,2-dihydroquinoline and N-isopropyl-N’-phenyl-p-phenylenediamine). These findings are in good agreement with our previous study on polar nitrile butadiene rubber.

Originality/value

The current study suggests the green biomass-derived Cu-LSF complex to be a promising low-cost and environmentally safe alternative filler and antioxidant to the hazardous commercial ones.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 17 April 2023

Kawaljit Singh Randhawa

The purpose of this study is to prepare a state-of-the-art review on advanced ceramic materials including their fabrication techniques, characteristics, applications and…

Abstract

Purpose

The purpose of this study is to prepare a state-of-the-art review on advanced ceramic materials including their fabrication techniques, characteristics, applications and wettability.

Design/methodology/approach

This review paper presents the various types of advanced ceramic materials according to their compounding elements, fabrication techniques of advanced ceramic powders as well as their consolidation, their characteristics, applications and wetting properties. Hydrophobic/hydrophilic properties of advanced ceramic materials are described in the paper with their state-of-the-art application areas. Optical properties of fine ceramics with their intrinsic characteristics are also presented within. Special focus is given to the brief description of application-based manipulation of wetting properties of advanced ceramics in the paper.

Findings

The study of wetting/hydrophobicity/hydrophilicity of ceramic materials is important by which it can be further modified to achieve the required applications. It also makes some sense that the material should be tested for its wetting properties when it is going to be used in some important applications like biomedical and dental. Also, these advanced ceramics are now often used in the fabrication of filters and membranes to purify liquid/water so the study of wetting characteristics of these materials becomes essential. The optical properties of advanced ceramics are equally making them suitable for many state-of-the-art applications. Dental, medical, imaging and electronics are the few sectors that use advanced ceramics for their optical properties.

Originality/value

This review paper includes various advanced ceramic materials according to their compounding elements, different fabrication techniques of powders and their consolidation, their characteristics, various application area and hydrophobic/hydrophilic properties.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 6 November 2023

Huda Abdullah, Norshafadzila Mohammad Naim, Kok Seng Shum, Aidil Abdul Hamid, Mohd Hafiz Dzarfan Othman, Vidhya Selvanathan, Wing Fen Yap and Seri Mastura Mustaza

Regular monitoring of bacteria, especially Escherichia coli, in wastewater is crucial to ensure the maintenance of public health. Amperometric detection proves to be a fast…

Abstract

Purpose

Regular monitoring of bacteria, especially Escherichia coli, in wastewater is crucial to ensure the maintenance of public health. Amperometric detection proves to be a fast, sensitive and economically viable solution for E. coli enumeration. This paper reported a prototype amperometric sensor based on PANI-ZnO-NiO nanocomposite thin films prepared by sol–gel method and irradiated with gamma ray. The purpose of this study is to investigate the sensor performance of PANI-ZnO-NiO nanocomposite thin films to detect E. coli in water.

Design/methodology/approach

The films were varied with different compositions of ZnO and NiO by using the formula PANI-(ZnO)1-x-(NiO)x, with x = 0.2, 0.4, 0.6 and 0.8. PANI-ZnO-NiO nanocomposite thin films were characterized by using X-ray diffraction (XRD) and atomic force microscopy (AFM) to study the crystallinity and surface morphology of the films. The sensor performance was conducted using the current–voltage (I-V) measurement by testing the films in clean water and E. coli solution.

Findings

XRD diffractograms show the peaks of ZnO (1 0 0) and NiO (1 0 2). AFM analysis shows the surface roughness, and the grain size of PANI-ZnO-NiO thin films decreases when the concentration ratios of NiO increased. I-V curves show the difference in current flow, where the current in E. coli solution is higher than the clean water.

Originality/value

PANI-(ZnO)1-x-(NiO)x nanocomposite thin film with the highest concentration of ZnO performed the highest sensitivity among the other concentrations, which can be used to indicate the presence of E. coli bacteria in water.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 11 May 2023

Wei Zhang, Chentao Liu, Jiming Yao and Shuangshuang Li

This study aims to produce a superhydrophobic fabric surface with a layered rough structure and which are resistant to droplet adhesion. Polydimethylsiloxane (PDMS) systems doped…

Abstract

Purpose

This study aims to produce a superhydrophobic fabric surface with a layered rough structure and which are resistant to droplet adhesion. Polydimethylsiloxane (PDMS) systems doped with stearic acid modified titanium dioxide (SA-TiO2) nanoparticles was sprayed onto the surface of cotton fabric.

Design/methodology/approach

This experiment therefore uses a simple method to prepare superhydrophobic textiles by spraying SA-TiO2 particles mixed with PDMS onto the surface of cotton fabrics. The effects of the ratio of stearic acid to TiO2, spraying times and tension on the apparent morphological structure and hydrophobic properties of the cotton fabric were investigated.

Findings

The results showed that the stearic acid-modified TiO2 nanoparticles were hydrophobic and more uniformly dispersed in the PDMS solution. When the modification ratio of stearic acid to TiO2 was 3:5, the water contact angle of cotton fabric was 155.48° and sliding angle was 6.67° under the applied tension for three times of spraying, showing superhydrophobicity. The fabric shows super hydrophobic and anti-adhesive properties to a wide range of liquids such as cola, dyeing liquids, tea, milk and simulated blood. The surface tension of the liquid shows a negative correlation with its adhesion to the fabric.

Research limitations/implications

The SA-TiO2 and PDMS were applied to the fabric surface by spraying, which not only gave the fabric superhydrophobic properties, but also created anti-adhesion to a wide range of droplets.

Practical implications

The superhydrophobic cotton fabrics prepared by this method showed good anti-adhesive behavior to common stains and simulated blood and can be used in the development of medical protective textiles.

Originality/value

Modification of TiO2 with stearic acid to prepare SA-TiO2 with excellent hydrophobic properties, which was mixed with PDMS to make suspensions. Fluorine-free superhydrophobic fabrics were prepared by spraying method. It also exhibited excellent anti-adhesive properties against blood, providing a reference for the preparation of self-cleaning and anti-adhesive surgical gowns.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 February 2024

Reasmy Raj, Amirul Syafiq, Vengadaesvaran Balakrishnan, Shakeel Ahmad, Nasrudin Abd Rahim, Pouya Hassandarvish, Sazaly Abu Bakar and A.K. Pandey

This paper aims to fabricate a polymer-based polyethylene glycol (PEG) coating with acrylic resin as a binder that can show antiviral activity against the feline coronavirus…

Abstract

Purpose

This paper aims to fabricate a polymer-based polyethylene glycol (PEG) coating with acrylic resin as a binder that can show antiviral activity against the feline coronavirus (FCov) on the glass substrate.

Design/methodology/approach

The PEG/acrylic coating systems of different weight percentages were coated on the glass substrates using the spray-coating method and cured at room temperature for 24 h.

Findings

The coating system containing 20 Wt.% of PEG exhibits the highest antiviral activities as high as 99.9% against FCov compared with other samples.

Research limitations/implications

Findings will be useful in the development of antiviral coating for PPE fabrics by using the simple synthesis method.

Originality/value

Application of PEG as an antiviral agent in the antiviral coating system with high antiviral activities about 99.9%.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 26 February 2024

Wenhai Tan, Yichen Zhang, Yuhao Song, Yanbo Ma, Chao Zhao and Youfeng Zhang

Aqueous zinc-ion battery has broad application prospects in smart grid energy storage, power tools and other fields. Co3O4 is one of the ideal cathode materials for water zinc-ion…

24

Abstract

Purpose

Aqueous zinc-ion battery has broad application prospects in smart grid energy storage, power tools and other fields. Co3O4 is one of the ideal cathode materials for water zinc-ion batteries due to their high theoretical capacity, simple synthesis, low cost and environmental friendliness. Many studies were concentrated on the synthesis, design and doping of cathodes, but the effect of process parameters on morphology and performance was rarely reported.

Design/methodology/approach

Herein, Co3O4 cathode material based on carbon cloth (Co3O4/CC) was prepared by different temperatures hydrothermal synthesis method. The temperatures of hydrothermal reaction are 100°C, 120°C, 130°C and 140°C, respectively. The influence of temperatures on the microstructures of the cathodes and electrochemical performance of zinc ion batteries were investigated by X-ray diffraction analysis, scanning electron microscopy, cyclic voltammetry curve, electrochemical charging and discharging behavior and electrochemical impedance spectroscopy test.

Findings

The results show that the Co3O4/CC material synthesized at 120°C has good performance. Co3O4/CC nanowire has a uniform distribution, regular surface and small size on carbon cloth. The zinc-ion battery has excellent rate performance and low reaction resistance. In the voltage range of 0.01–2.2 V, when the current density is 1 A/g, the specific capacity of the battery is 108.2 mAh/g for the first discharge and the specific capacity of the battery is 142.6 mAh/g after 60 charge and discharge cycles.

Originality/value

The study aims to investigate the effect of process parameters on the performance of zinc-ion batteries systematically and optimized applicable reaction temperature.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 11