Search results

1 – 10 of over 15000
Article
Publication date: 7 September 2015

Biao Mei, Weidong Zhu, Huiyue Dong and Yinglin Ke

This paper aims to propose a roadmap to control the robot–subassembly (R–S) coordination errors in movable robotic drilling. Fastener hole drilling for multi-station aircraft…

Abstract

Purpose

This paper aims to propose a roadmap to control the robot–subassembly (R–S) coordination errors in movable robotic drilling. Fastener hole drilling for multi-station aircraft assembly demands a robotic drilling system with expanded working volume and high positioning accuracy. However, coordination errors often exist between the robot and the subassembly to be drilled because of disturbances.

Design/methodology/approach

Mechanical pre-locating and vision-based robot base frame calibration are consecutively implemented to achieve in-process robot relocation after station transfer. Thus, coordination errors induced by robotic platform movements, inconsistent thermal effects, etc. are eliminated. The two-dimensional (2D) vision system is applied to measure the remainder of the R–S coordination errors, which is used to enhance the positioning accuracy of the robot. Accurate estimation of measured positioning errors is of great significance for evaluating the positioning accuracy. For well estimation of the positioning errors with small samples, a bootstrap approach is put forward.

Findings

A roadmap for R–S coordination error control using a 2D vision system, composed of in-process relocation, coordination error measurement and drilled position correction, is developed for the movable robotic drilling.

Practical implications

The proposed roadmap has been integrated into a drilling system for the assembly of flight control surfaces of a transport aircraft in Aviation Industry Corporation of China. The position accuracy of the drilled fastener holes is well ensured.

Originality/value

A complete roadmap for controlling coordination errors and improving positioning accuracy is proposed, which makes the high accuracy and efficiency available in movable robotic drilling for aircraft manufacturing.

Article
Publication date: 8 May 2019

Feiyan Guo, Fang Zou, Jian Hua Liu, Qingdong Xiao and Zhongqi Wang

Manufacturing errors, which will propagate along the assembly process, are inevitable and difficult to analyze for complex products, such as aircraft. To realize the goal of…

Abstract

Purpose

Manufacturing errors, which will propagate along the assembly process, are inevitable and difficult to analyze for complex products, such as aircraft. To realize the goal of precise assembly for an aircraft, with revealing the nonlinear transfer mechanism of assembly error, a set of analytical methods with response to the assembly error propagation process are developed. The purpose of this study is to solve the error problems by modeling and constructing the coordination dimension chain to control the consistency of accumulated assembly errors for different assemblies.

Design/methodology/approach

First, with the modeling of basic error sources, mutual interaction relationship of matting error and deformation error is analyzed, and influence matrix is formed. Second, by defining coordination datum transformation process, practical establishing error of assembly coordinate system is studied, and the position of assembly features is modified with actual relocation error considering datum changing. Third, considering the progressive assembly process, error propagation for a single assembly station and multi assembly stations is precisely modeled to gain coordination error chain for different assemblies, and the final coordination error is optimized by controlling the direction and value of accumulated error range.

Findings

Based on the proposed methodology, coordination error chain, which has a direct influence on the property of stealthy and reliability for modern aircrafts, is successfully constructed for the assembly work of the jointing between leading edge flap component and wing component at different assembly stations.

Originality/value

Precise assembly work at different assembly stations is completed to verify methodology’s feasibility. With analyzing the main comprised error items and some optimized solutions, benefit results for the practical engineering application showing that the maximum value of the practical flush of the profiles between the two components is only 0.681 mm, the minimum value is only 0.021 mm, and the average flush of the entire wing component is 0.358 mm, which are in accordance with theoretical calculation results and can successfully fit the assembly requirement. The potential user can be the engineers for manufacturing the complex products.

Details

Assembly Automation, vol. 39 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 26 October 2018

Biao Mei, Weidong Zhu and Yinglin Ke

Aircraft assembly demands high position accuracy of drilled fastener holes. Automated drilling is a key technology to fulfill the requirement. The purpose of the paper is to…

296

Abstract

Purpose

Aircraft assembly demands high position accuracy of drilled fastener holes. Automated drilling is a key technology to fulfill the requirement. The purpose of the paper is to conduct positioning variation analysis and control for an automated drilling to achieve a high positioning accuracy.

Design/methodology/approach

The nominal and varied connective models of automated drilling are constructed for positioning variation analysis regarding automated drilling. The principle of a strategy for reducing positioning variation in drilling, which shortens the positioning variation chain with the aid of an industrial camera-based vision system, is explored. Moreover, other strategies for positioning variation control are developed based on mathematical analysis to further reduce the position errors of the drilled fastener holes.

Findings

The propagation and accumulation of an automated drilling system’s positioning variation are explored. The principle of reducing positioning variation in an automated drilling using a monocular vision system is discussed from the view of variation chain.

Practical implications

The strategies for reducing positioning variation, rooted in the constructed positioning variation models, have been applied to a machine-tool based automated drilling system. The system is developed for a wing assembly of an aircraft in the Aviation Industry Corporation of China.

Originality/value

Propagation, accumulation and control of positioning variation in an automated drilling are comprehensively explored. Based on this, the positioning accuracy in an automated drilling is controlled below 0.13 mm, which can meet the requirement for the assembly of the aircraft.

Article
Publication date: 8 November 2022

Md. Helal Miah, Jianhua Zhang and Ravinder Tonk

Regarding the assembly of the fuselage panel, this paper aims to illustrate a design of pre-assembly tooling of the fuselage panel for the automatic drilling riveting machine…

Abstract

Purpose

Regarding the assembly of the fuselage panel, this paper aims to illustrate a design of pre-assembly tooling of the fuselage panel for the automatic drilling riveting machine. This new prototype of pre-assembly tooling can be used for different types and sizes of fuselage panels. Also, apply to the automated drilling and riveting machine of the fuselage panels.

Design/methodology/approach

Based on the different structures of the fuselage panel, the position of the preassembly tooling components, location of the clamp and position of the fuselage panel are determined. After that, the overall structure of the preassembly tooling is designed, including the movable frame and the cardboard. The cardboard positioning module and the clamping module formulate a detailed design scheme of preassembly tooling for the fuselage panel. The structure of the pre-assembled tooling is optimized by static analysis. The result of the overall design is optimized by using MATLAB and CATIA-V5 software, and the results meet the condition of the design requirements.

Findings

The traditional assembly process of the fuselage is to install the fuselage panel on the preassembly tooling for positioning the hole and then install it on the automated drilling and riveting tooling for secondary tooling. Secondary tooling can consume assembly errors of the fuselage panel. The new prototype of flexible tooling design for the fuselage panel not only avoids the secondary tooling error of the fuselage panel but also meets the preassembly of different types of fuselage panels.

Research limitations/implications

The further development of the flexible tooling design of the fuselage panel is to reduce the error of sliding tooling due to friction of the sliding components. Because if the assembly cycle is increased, the sliding parts will lose material due to corrosion. As a result, the repeated friction force is the root cause of the positioning error of sliding parts. Therefore, it is necessary to engage less corrosive material. Also, the lubricant may be used to reduce the corrosion in minimizing the positioning error of the sliding tool components. In addition, it is important to calculate the number of assembly cycles for efficient fuselage panel assembly.

Originality/value

According to the structure and assembly process characteristics of the fuselage panel, the fuselage panel preassembly tooling can optimize the assembly process of the fuselage panel and have certain practical application values.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 22 March 2021

Dongmin Li, Guofang Ma and Jia Li

It is essential to level the drilling platform across which a drilling robot travels in a slant underground coal mine tunnel to ensure smooth operation of the drill rod. However…

Abstract

Purpose

It is essential to level the drilling platform across which a drilling robot travels in a slant underground coal mine tunnel to ensure smooth operation of the drill rod. However, existing leveling methods do not provide dynamic performance under the drilling conditions of the underground coal mine. A four-point dynamic leveling algorithm is presented in this paper based on the platform attitude and support rod displacement (DLAAD). An experimental drilling robot demonstrates its dynamic leveling capability and ability to ensure smooth drill rod operations.

Design/methodology/approach

The attitude coordinate of the drilling robot is established according to its structure. A six-axis combined sensor is adopted to detect the platform attitude, thus revealing the three-axis Euler angles. The support rod displacement values are continuously detected by laser displacement sensors to obtain the displacement increment of each support rod as needed. The drilling robot is leveled according to the current support rod displacement and three-dimensional (3 D) attitude detected by the six-axis combined sensor dynamically.

Findings

Experimental results indicate that the DLAAD algorithm is correct and effectively levels the drilling platform dynamically. It can thus provide essential support in resolving drill rod sticking problems during actual underground coal mine drilling operations.

Practical implications

The DLAAD algorithm supports smooth drill rod operations in underground coal mines, which greatly enhances safety, reduces power consumption, and minimizes cost. The approach proposed here thus represents considerable benefits in terms of coal mine production and shows notable potential for application in similar fields.

Originality/value

The novel DLAAD algorithm and leveling control method are the key contributions of this work, they provide dynamical 3 D leveling and help to resolve drill rod sticking problems.

Details

Assembly Automation, vol. 41 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 11 April 2022

Junshan Hu, Xinyue Sun, Wei Tian, Shanyong Xuan, Yang Yan, Wang Changrui and Wenhe Liao

Aerospace assembly demands high drilling position accuracy for fastener holes. Hole position error correction is a key issue to meet the required hole position accuracy. This…

Abstract

Purpose

Aerospace assembly demands high drilling position accuracy for fastener holes. Hole position error correction is a key issue to meet the required hole position accuracy. This paper aims to propose a combined hole position error correction method to achieve high positioning accuracy.

Design/methodology/approach

The bilinear interpolation surface function based on the shape of the aerospace structure is capable of dealing with position error of non-gravity deformation. A gravity deformation model is developed based on mechanics theory to efficiently correct deformation error caused by gravity. Moreover, three solution strategies of the average, least-squares and genetic optimization algorithms are used to solve the coefficients in the gravity deformation model to further improve position accuracy and efficiency.

Findings

Experimental validation shows that the combined position error correction method proposed in this paper significantly reduces the position errors of fastener holes from 1.106 to 0.123 mm. The total position error is reduced by 43.49% compared with the traditional mechanics theory method.

Research limitations/implications

The position error correlation method could reach an accuracy of millimeter or submillimeter scale, which may not satisfy higher precision.

Practical implications

The proposed position error correction method has been integrated into the automatic drilling machine to ensure the drilling position accuracy.

Social implications

The proposed position error method could promote the wide application of automatic drilling and riveting machining system in aerospace industry.

Originality/value

A combined position error correction method and the complete roadmap for error compensation are proposed. The position accuracy of fastener holes is reduced stably below 0.2 mm, which can fulfill the requirements of aero-structural assembly.

Article
Publication date: 4 April 2016

Mohammad Ali Dehghani and Mohammad Bagher Menhaj

The purpose of this paper is achieving a leader–follower formation of unmanned aerial vehicles which is a cooperative scenario inspired by formation flying of living organisms…

Abstract

Purpose

The purpose of this paper is achieving a leader–follower formation of unmanned aerial vehicles which is a cooperative scenario inspired by formation flying of living organisms such as geese. Designing a control strategy based on only vision measurement (without radio communication) and keeping connectivity in vision are important challenges in the formation flying problem which is the base of formation flying in living organisms.

Design/methodology/approach

To achieve the mentioned purposes, a feedback linearization technique is used. Moreover, a Takagi-Sugeno-based supervisory control strategy for visibility maintenance combined with an acceleration estimator to compensate the leader maneuvers is proposed.

Findings

The authors conclude that by using practical seeker sensors, all the mentioned objectives (under the proposed strategy) can be satisfied.

Originality/value

Keeping formation and visibility maintenance in the presence of the leader maneuver are the main contributions of the paper.

Details

Assembly Automation, vol. 36 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 9 October 2018

Fuhai Zhang, Jiadi Qu, He Liu and Yili Fu

This paper aims to develop a pose/force coordination method for a redundant dual-arm robot to achieve a symmetric coordination task.

Abstract

Purpose

This paper aims to develop a pose/force coordination method for a redundant dual-arm robot to achieve a symmetric coordination task.

Design/methodology/approach

A novel control strategy of dual-arm coordination is proposed that associates pose coordination with force coordination. The spatial in-parallel spring and damping model is built to regulate the relative pose error of two end-effectors in real time, and force coordination factor is introduced to realize the dynamic distribution of loadings to limit the object’s internal force in real time.

Findings

The proposed method was verified on a real dual-arm robot platform. The symmetric coordination task is performed and the experiment results show that a good behavior on the regulation of the relative pose errors between two arms to achieve the object’s trajectory tracking, and the distribution of the two end-effectors’ loadings to limit the object’s internal force.

Originality/value

The benefits of the proposed method are to improve the object’s tracking performance and avoid the object damage during the symmetric coordination task.

Details

Assembly Automation, vol. 38 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 8 March 2011

Jun Zhou and Yueqing Yu

The purpose of this paper is to present a novel and accurate coordination control method of dual‐arm modular robot based on position feedback using 3D motion measurement system …

Abstract

Purpose

The purpose of this paper is to present a novel and accurate coordination control method of dual‐arm modular robot based on position feedback using 3D motion measurement system – Optotrak3020. The end‐position accuracy of dual‐arm modular robot can be improved obviously.

Design/methodology/approach

By means of Optotrak3020, the actual end‐position of dual‐arm modular robot is acquired and then returned to the robotic controllers, so the corresponding position error compensation is implemented. Through a 3D simulation and experiment of dual‐arm modular robot for tracking a trajectory of plane right triangle, the feasibility and validity of this control strategy are verified.

Findings

The coordination control of dual‐arm modular robot based on position feedback can be accomplished by means of Optotrak3020. The dual‐arm modular robot can accurately accomplish the task of positioning or tracking a reference trajectory.

Practical implications

This real‐time position feedback control method with high control accuracy can be implemented on a PowerCube dual‐arm modular robot system. This method also can be applied to other dual‐arm robot systems, such as mobile robot with dual‐arm, humanoid robot.

Originality/value

The coordination control method of dual‐arm modular robot is presented based on end‐position feedback using Optotrak3020 motion measurement system. The platforms of simulation, communication and experiment are developed, respectively.

Details

Industrial Robot: An International Journal, vol. 38 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 18 January 2016

Xiangyu Liu, Ping Zhang and Guanglong Du

The purpose of this paper is to provide a hybrid adaptive impedance-leader-follower control algorithm for multi-arm coordination manipulators, which is significant for dealing…

Abstract

Purpose

The purpose of this paper is to provide a hybrid adaptive impedance-leader-follower control algorithm for multi-arm coordination manipulators, which is significant for dealing with the problems of kinematics inconsistency and error accumulation of interactive force in multi-arm system.

Design/methodology/approach

This paper utilized a motion mapping theory in Cartesian space to establish a centralized dynamic leader-follower control algorithm which helped to reduce the possibility of kinematics inconsistency for multiple manipulators. A virtual linear spring model (VLSM) was presented based on a recognition approach of characteristic marker. This paper accomplished an adaptive impedance control algorithm based on the VLSM, which took into account the non-rigid contact characteristic. Experimentally demonstrated results showed the proposed algorithm guarantees that the motion and interactive forces asymptotically converge to the prescribed values.

Findings

The hybrid control method improves the accuracy and reliability of multi-arm coordination system, which presents a new control framework for multiple manipulators.

Practical implications

This algorithm has significant commercial applications, as a means of controlling multi-arm coordination manipulators that could serve to handle large objects and assemble complicated objects in industrial and hazardous environment.

Originality/value

This work presented a new control framework for multiple coordination manipulators, which can ensure consistent kinematics and reduce the influence of error accumulation, and thus can improve the accuracy and reliability of multi-arm coordination system.

Details

Industrial Robot: An International Journal, vol. 43 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of over 15000