Search results

1 – 10 of 127
Article
Publication date: 18 April 2024

Li Li, Tong Huang, Chujia Pan, J.F. Pan and Wenbin Su

The purpose of this paper aims to investigate the adaptive impedance control and its optimized PSO algorithm for force tracking of a dual-arm cooperative robot. Because the…

Abstract

Purpose

The purpose of this paper aims to investigate the adaptive impedance control and its optimized PSO algorithm for force tracking of a dual-arm cooperative robot. Because the dual-arm robot is directly in contact with external environment, controlling the mutual force between robot and external environment is of great importance. Besides, a high compliance of the robot should be guaranteed.

Design/methodology/approach

An impedance control based on Particle Swarm Optimization (PSO) algorithm is designed to track the mutual force and achieve compliance control of the robot end.

Findings

The experimental results show that the impedance control coefficients can be automatically tuned converged by PSO algorithm.

Originality/value

The system can reach a steady state within 0.03 s with overshoot convergence, and the force fluctuation range at the steady state decreases to about ±0.08 N even under the force mutation condition.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 28 March 2023

Kumar Madhan, Shameem Shagirbasha, Tanmaya Kumar Mishra and Juman Iqbal

The aim of this study is to examine the existing literature on service robots in order to identify prominent themes, assess the present state of service robotics research and…

1452

Abstract

Purpose

The aim of this study is to examine the existing literature on service robots in order to identify prominent themes, assess the present state of service robotics research and highlight the contributions of seminal publications in the business, management and hospitality domain.

Design/methodology/approach

This study analysed 332 Scopus papers from 1985 to 2022 using bibliometric techniques like citation and co-citation analysis.

Findings

The study findings highlighted that there has been a consistent rise in publications related to service robots. The paper identifies three significant themes in the service robot literature: adoption of service robots in the context of customer service, anthropomorphism and integration of artificial intelligence in robotic service. Furthermore, this study highlights prominent authors, journals, institutions and countries associated with research on service robots and discusses the future research opportunities in this domain.

Originality/value

This study contributes to the service robots’ literature in the hospitality context by compilation of various reference materials using a comprehensive bibliometric analysis. Previous studies do not point out crucial themes in this area, nor do they provide an overview of prominent journals, institutions, authors and trends in this field. Therefore, this study attempts to fill the lacunae.

Details

International Hospitality Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2516-8142

Keywords

Article
Publication date: 8 February 2024

Ganesh Narkhede, Satish Chinchanikar, Rupesh Narkhede and Tansen Chaudhari

With ever-increasing global concerns over environmental degradation and resource scarcity, the need for sustainable manufacturing (SM) practices has become paramount. Industry 5.0…

Abstract

Purpose

With ever-increasing global concerns over environmental degradation and resource scarcity, the need for sustainable manufacturing (SM) practices has become paramount. Industry 5.0 (I5.0), the latest paradigm in the industrial revolution, emphasizes the integration of advanced technologies with human capabilities to achieve sustainable and socially responsible production systems. This paper aims to provide a comprehensive analysis of the role of I5.0 in enabling SM. Furthermore, the review discusses the integration of sustainable practices into the core of I5.0.

Design/methodology/approach

The systematic literature review (SLR) method is adopted to: explore the understanding of I5.0 and SM; understand the role of I5.0 in addressing sustainability challenges, including resource optimization, waste reduction, energy efficiency and ethical considerations and propose a framework for effective implementation of the I5.0 concept in manufacturing enterprises.

Findings

The concept of I5.0 represents a progressive step forward from previous industrial revolutions, emphasizing the integration of advanced technologies with a focus on sustainability. I5.0 offers opportunities to optimize resource usage and minimize environmental impact. Through the integration of automation, artificial intelligence (AI) and big data analytics (BDA), manufacturers can enhance process efficiency, reduce waste and implement proactive sustainability measures. By embracing I5.0 and incorporating SM practices, industries can move towards a more resource-efficient, environmentally friendly and socially responsible manufacturing paradigm.

Research limitations/implications

The findings presented in this article have several implications including the changing role of the workforce, skills requirements and the need for ethical considerations for SM, highlighting the need for interdisciplinary collaborations, policy support and stakeholder engagement to realize its full potential.

Originality/value

This article aims to stand on an unbiased assessment to ascertain the landscape occupied by the role of I5.0 in driving sustainability in the manufacturing sector. In addition, the proposed framework will serve as a basis for the effective implementation of I5.0 for SM.

Details

Journal of Strategy and Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1755-425X

Keywords

Article
Publication date: 26 March 2024

Zhiqiang Wang

This paper aims to present a novel lightweight distribution grid operating robot system with focus on lightweight and multi-functionality, aiming for autonomous and live-line…

Abstract

Purpose

This paper aims to present a novel lightweight distribution grid operating robot system with focus on lightweight and multi-functionality, aiming for autonomous and live-line maintenance operations.

Design/methodology/approach

A ground-up redesign of the dual-arm robotic system with 12-DoF is applied for substantial weight reduction; a dual-mode operating control framework is proposed, with vision-guided autonomous operation embedded with real-time manual teleoperation controlling both manipulators simultaneously; a quick-swap tooling system is developed to conduct multi-functional operation tasks. A prototype robotic system is constructed and validated in a series of operational experiments in an emulated environment both indoors and outdoors.

Findings

The overall weight of the system is successfully brought down to under 150 kg, making it suitable for the majority of vehicle-mounted aerial work platforms, and it can be flexibly and quickly deployed in population dense areas with narrow streets. The system equips with two dexterous robotic manipulators and up to six interchangeable tools, and a vision system for AI-based autonomous operations. A quick-change tooling system ensures the robot to change tools on-the-go without human intervention.

Originality/value

The resulting dual-arm robotic live-line operation system robotic system could be compact and lightweight enough to be deployed on a wide range of available aerial working platforms with high mobility and efficiency. The robot could both conduct routine operation tasks fully autonomously without human direct operation and be manually operated when required. The quick-swap tooling system enables lightweight and durable interchangeability of multiple end-effector tools, enabling future expansion of operating capabilities across different tasks and operating scenarios.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 May 2023

Hongliang Yu, Zhen Peng, Zirui He and Chun Huang

The purpose of this paper is to establish a maturity evaluation model for the application of construction steel structure welding robotics suitable for the actual situation and…

100

Abstract

Purpose

The purpose of this paper is to establish a maturity evaluation model for the application of construction steel structure welding robotics suitable for the actual situation and specific characteristics of engineering projects in China and then to assess the maturity level of the technology in the application of domestic engineering projects more scientifically.

Design/methodology/approach

The research follows a qualitative and quantitative analysis method. In the first stage, the structure of the maturity model is constructed and the evaluation index system is designed by using the ideas of the capability maturity model and WSR methodology for reference. In the second stage, the design of the evaluation process and the selection of evaluation methods (analytic hierarchy process method, multi-level gray comprehensive evaluation method). In the third stage, the data are collected and organized (preparation of questionnaires, distribution of questionnaires, questionnaire collection). In the fourth stage, the established maturity evaluation model is used to analyze the data.

Findings

The evaluation model established by using multi-level gray theory can effectively transform various complex indicators into an intuitive maturity level or score status. The conclusion shows that the application maturity of building steel structure welding robot technology in this project is at the development level as a whole. The maturity levels of “WuLi – ShiLi – RenLi” are respectively: development level, development level, between starting level and development level. Comparison of maturity evaluation values of five important factors (from high to low): environmental factors, technical factors, management factors, benefit factors, personnel and group factors.

Originality/value

In this paper, based on the existing research related to construction steel structure welding robot technology, a quantitative and holistic evaluation of the application of construction steel structure welding robot technology in domestic engineering projects is conducted for the first time from a project perspective by designing a maturity evaluation index system and establishing a maturity evaluation model. This research will help the project team to evaluate the application level (maturity) of the welding robot in the actual project, identify the shortcomings and defects of the application of this technology, then improve the weak links pertinently, and finally realize the gradual improvement of the overall application level of welding robot technology for building steel structure.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 12 January 2024

Wei Xiao, Zhongtao Fu, Shixian Wang and Xubing Chen

Because of the key role of joint torque in industrial robots (IRs) motion performance control and energy consumption calculation and efficiency optimization, the purpose of this…

Abstract

Purpose

Because of the key role of joint torque in industrial robots (IRs) motion performance control and energy consumption calculation and efficiency optimization, the purpose of this paper is to propose a deep learning torque prediction method based on long short-term memory (LSTM) recurrent neural networks optimized by particle swarm optimization (PSO), which can accurately predict the the joint torque.

Design/methodology/approach

The proposed model optimized the LSTM with PSO algorithm to accurately predict the IRs joint torque. The authors design an excitation trajectory for ABB 1600–10/145 experimental robot and collect its relative dynamic data. The LSTM model was trained with the experimental data, and PSO was used to find optimal number of LSTM nodes and learning rate, then a torque prediction model is established based on PSO-LSTM deep learning method. The novel model is used to predict the robot’s six joint torque and the root mean error squares of the predicted data together with least squares (LS) method were comparably studied.

Findings

The predicted joint torque value by PSO-LSTM deep learning approach is highly overlapped with those from real experiment robot, and the error is quite small. The average square error between the predicted joint torque data and experiment data is 2.31 N.m smaller than that with the LS method. The accuracy of the novel PSO-LSTM learning method for joint torque prediction of IR is proved.

Originality/value

PSO and LSTM model are deeply integrated for the first time to predict the joint torque of IR and the prediction accuracy is verified.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 April 2024

Yang Liu, Xiang Huang, Shuanggao Li and Wenmin Chu

Component positioning is an important part of aircraft assembly, aiming at the problem that it is difficult to accurately fall into the corresponding ball socket for the ball head…

Abstract

Purpose

Component positioning is an important part of aircraft assembly, aiming at the problem that it is difficult to accurately fall into the corresponding ball socket for the ball head connected with aircraft component. This study aims to propose a ball head adaptive positioning method based on impedance control.

Design/methodology/approach

First, a target impedance model for ball head positioning is constructed, and a reference positioning trajectory is generated online based on the contact force between the ball head and the ball socket. Second, the target impedance parameters were optimized based on the artificial fish swarm algorithm. Third, to improve the robustness of the impedance controller in unknown environments, a controller is designed based on model reference adaptive control (MRAC) theory and an adaptive impedance control model is built in the Simulink environment. Finally, a series of ball head positioning experiments are carried out.

Findings

During the positioning of the ball head, the contact force between the ball head and the ball socket is maintained at a low level. After the positioning, the horizontal contact force between the ball head and the socket is less than 2 N. When the position of the contact environment has the same change during ball head positioning, the contact force between the ball head and the ball socket under standard impedance control will increase to 44 N, while the contact force of the ball head and the ball socket under adaptive impedance control will only increase to 19 N.

Originality/value

In this paper, impedance control is used to decouple the force-position relationship of the ball head during positioning, which makes the entire process of ball head positioning complete under low stress conditions. At the same time, by constructing an adaptive impedance controller based on MRAC, the robustness of the positioning system under changes in the contact environment position is greatly improved.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 26 February 2024

Xiaohui Jia, Chunrui Tang, Xiangbo Zhang and Jinyue Liu

This study aims to propose an efficient dual-robot task collaboration strategy to address the issue of low work efficiency and inability to meet the production needs of a single…

Abstract

Purpose

This study aims to propose an efficient dual-robot task collaboration strategy to address the issue of low work efficiency and inability to meet the production needs of a single robot during construction operations.

Design/methodology/approach

A hybrid task allocation method based on integer programming and auction algorithms, with the aim of achieving a balanced workload between two robots has been proposed. In addition, while ensuring reasonable workload allocation between the two robots, an improved dual ant colony algorithm was used to solve the dual traveling salesman problem, and the global path planning of the two robots was determined, resulting in an efficient and collision-free path for the dual robots to operate. Meanwhile, an improved fast Random tree rapidly-exploring random tree algorithm is introduced as a local obstacle avoidance strategy.

Findings

The proposed method combines randomization and iteration techniques to achieve an efficient task allocation strategy for two robots, ensuring the relative optimal global path of the two robots in cooperation and solving complex local obstacle avoidance problems.

Originality/value

This method is applied to the scene of steel bar tying in construction work, with the workload allocation and collaborative work between two robots as evaluation indicators. The experimental results show that this method can efficiently complete the steel bar banding operation, effectively reduce the interference between the two robots and minimize the interference of obstacles in the environment.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 19 September 2023

Hongfei Zhu, Xiekui Zhang and Baocheng Yu

This study aims to investigate whether the increasing robot adoption will affect employment rate and wages to contribute to the economic cycle and sustainable development in the…

Abstract

Purpose

This study aims to investigate whether the increasing robot adoption will affect employment rate and wages to contribute to the economic cycle and sustainable development in the world.

Design/methodology/approach

The authors introduce a two-way fixed effect model and ordinary least-squares (OLS) model to evaluate the influence based on relevant data of the eighteen countries with the largest robot stocks and robot densities in the world from 2006 to 2019 to test the influences and do the robustness test and endogeneity test by using empirical models.

Findings

The authors’ research findings suggest that increasing robot adoption can cause strong negative impacts on employment for both males and females in these economies. Second, the effect of robots on reducing job opportunities has penetrated different industries. It means that this negative impact of robots is comprehensive for the industry. Third, robot adoption can have a strong positive influence on wages and increase workers' incomes.

Research limitations/implications

The limitations of the study are that the influence of industrial intelligence technologies on the circular economy is diversities in different countries. Thus, this study should consider the development levels of different economies to do additional confirmatory studies.

Practical implications

This study makes out the correlations between industrial robots and the employment market from the circular economy perspective. The result proves the existence of this influence relationship, and the authors propose some suggestions to promote sustainable economic development.

Social implications

This paper addresses the activity of industrial intelligence technologies in the labor market. The employment market is an important part of the circular economy, and it will benefit social development if the government provides appropriate guidance for social investment and industrial layout.

Originality/value

This study is one of the few studies which considered the impact of industrial robots on employment and wages from the perspective of different industries, and this is very important for the circular economy in the world. The results of this paper provide an instructive reference for government policymakers and other countries to stabilize the labor market and optimize human resources for sustainable economic development.

Details

Management Decision, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0025-1747

Keywords

Article
Publication date: 29 February 2024

Robert Bogue

The purpose of this paper is to illustrate the growing role of robots in the logistics industry.

Abstract

Purpose

The purpose of this paper is to illustrate the growing role of robots in the logistics industry.

Design/methodology/approach

Following an introduction, which identifies key challenges facing the industry, this paper discusses robotic applications in warehouses, followed by sections covering transportation and delivery and conclusions.

Findings

The logistics industry faces a number of challenges that drive technological and operational changes. Robots are already playing a role within the warehouse sector and more complex applications have recently arisen from developments in artificial intelligence-enabled vision technology. In the transportation sector, autonomous trucks are being developed and trialled by leading manufacturers. Many major logistics companies are involved and limited services are underway. Last-mile delivery applications are growing rapidly, and trials, pilot schemes and commercial services are underway in Europe, the USA and the Far East. The Chinese market is particularly buoyant, and in 2019, a delivery robot was launched that operates on public roads, based on Level-4 autonomous driving technology. The drone delivery sector has been slower to develop, in part due to regulatory constraints, but services are now being operated by drone manufacturers, retailers and logistics providers.

Originality/value

This paper provides details of existing and future applications of robots in the logistics industry.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 127