Search results

1 – 10 of over 1000
Article
Publication date: 19 April 2024

Mahesh Gaikwad, Suvir Singh, N. Gopalakrishnan, Pradeep Bhargava and Ajay Chourasia

This study investigates the impact of the fire decay phase on structural damage using the sectional analysis method. The primary objective of this work is to forecast the…

Abstract

Purpose

This study investigates the impact of the fire decay phase on structural damage using the sectional analysis method. The primary objective of this work is to forecast the non-dimensional capacity parameters for the axial and flexural load-carrying capacity of reinforced concrete (RC) sections for heating and the subsequent post-heating phase (decay phase) of the fire.

Design/methodology/approach

The sectional analysis method is used to determine the moment and axial capacities. The findings of sectional analysis and heat transfer for the heating stage are initially validated, and the analysis subsequently proceeds to determine the load capacity during the fire’s heating and decay phases by appropriately incorporating non-dimensional sectional and material parameters. The numerical analysis includes four fire curves with different cooling rates and steel percentages.

Findings

The study’s findings indicate that the rate at which the cooling process occurs after undergoing heating substantially impacts the axial and flexural capacity. The maximum degradation in axial and flexural capacity occurred in the range of 15–20% for cooling rates of 3 °C/min and 5 °C/min as compared to the capacity obtained at 120 min of heating for all steel percentages. As the fire cooling rate reduced to 1 °C/min, the highest deterioration in axial and flexural capacity reached 48–50% and 42–46%, respectively, in the post-heating stage.

Research limitations/implications

The established non-dimensional parameters for axial and flexural capacity are limited to the analysed section in the study owing to the thermal profile, however, this can be modified depending on the section geometry and fire scenario.

Practical implications

The study primarily focusses on the degradation of axial and flexural capacity at various time intervals during the entire fire exposure, including heating and cooling. The findings obtained showed that following the completion of the fire’s heating phase, the structural capacity continued to decrease over the subsequent post-heating period. It is recommended that structural members' fire resistance designs encompass both the heating and cooling phases of a fire. Since the capacity degradation varies with fire duration, the conventional method is inadequate to design the load capacity for appropriate fire safety. Therefore, it is essential to adopt a performance-based approach while designing structural elements' capacity for the desired fire resistance rating. The proposed technique of using non-dimensional parameters will effectively support predicting the load capacity for required fire resistance.

Originality/value

The fire-resistant requirements for reinforced concrete structures are generally established based on standard fire exposure conditions, which account for the fire growth phase. However, it is important to note that concrete structures can experience internal damage over time during the decay phase of fires, which can be quantitatively determined using the proposed non-dimensional parameter approach.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Book part
Publication date: 5 June 2023

Sonali A. Deshmukh, Praveen Barmavatu, Mihir Kumar Das, Bukke Kiran Naik, Vineet Singh Sikarwar, Alety Shivakrishna, Radhamanohar Aepuru and Rathod Subash

This study has covered many types of solar-powered air-conditioning systems that may be used as an alternative to traditional electrically powered air-conditioning systems in…

Abstract

This study has covered many types of solar-powered air-conditioning systems that may be used as an alternative to traditional electrically powered air-conditioning systems in order to reduce energy usage. Solar adsorption air cooling is a great alternative to traditional vapor compression air-conditioning. Solar adsorption has several advantages over traditional vapor-compression systems, including being a green cooling technology which uses solar energy to drive the cycle, using pure water as an eco-friendly HFC-free refrigerant, and being mechanically simple with only the magnetic valves as moving parts. Several advancements and breakthroughs have been developed in the area of solar adsorption air-conditioners during the previous decade. However, further study is required before this technology can be put into practise. As a result, this book chapter highlights current research that adds to the understanding of solar adsorption air-conditioning technologies, with a focus on practical research. These systems have the potential to become the next iteration of air-conditioning systems, with the benefit of lowering energy usage while using plentiful solar energy supplies to supply the cooling demand.

Article
Publication date: 9 January 2024

Fatih Selimefendigil and Hakan F. Oztop

This study aims to examine the effects of cross-flow and multiple jet impingement on conductive panel cooling performance when subjected to uniform magnetic field effects. The…

Abstract

Purpose

This study aims to examine the effects of cross-flow and multiple jet impingement on conductive panel cooling performance when subjected to uniform magnetic field effects. The cooling system has double rotating cylinders.

Design/methodology/approach

Cross-flow ratios (CFR) ranging from 0.1 to 1, magnetic field strength (Ha) ranging from 0 to 50 and cylinder rotation speed (Rew) ranging from −5,000 to 5,000 are the relevant parameters that are included in the numerical analysis. Finite element method is used as solution technique. Radial basis networks are used for the prediction of average Nusselt number (Nu), average surface temperature of the panel and temperature uniformity effects when varying the impacts of cross-flow, magnetic field and rotations of the double cylinder in the cooling channel.

Findings

The effect of CFR on cooling efficiency and temperature uniformity is favorable. By raising the CFR to the highest value under the magnetic field, the average Nu can rise by up to 18.6%, while the temperature drop and temperature difference are obtained as 1.87°C and 3.72°C. Without cylinders, magnetic field improves the cooling performance, while average Nu increases to 4.5% and 8.8% at CR = 0.1 and CR = 1, respectively. When the magnetic field is the strongest with cylinders in channel at CFR = 1, temperature difference (ΔT) is obtained as 2.5 °C. The rotational impacts on thermal performance are more significant when the cross-flow effects are weak (CFR = 0.1) compared to when they are substantial (CFR = 1). Cases without a cylinder have the worst performance for both weak and severe cross-flow effects, whereas using two rotating cylinders increases cooling performance and temperature uniformity for the conductive panel. The average surface temperature lowers by 1.2°C at CFR = 0.1 and 0.5°C at CFR = 1 when the worst and best situations are compared.

Originality/value

The outcomes are relevant in the design and optimization-based studies for electric cooling, photo-voltaic cooling and battery thermal management.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 October 2023

Ajay Kumar Jaiswal and Pallab Sinha Mahapatra

Maintaining the turbine blade’s temperature within the safety limit is challenging in high-pressure turbines. This paper aims to numerically present the conjugate heat transfer…

Abstract

Purpose

Maintaining the turbine blade’s temperature within the safety limit is challenging in high-pressure turbines. This paper aims to numerically present the conjugate heat transfer analysis of a novel approach to mini-channel embedded film-cooled flat plate.

Design/methodology/approach

Numerical simulations were performed at a steady state using SST kω turbulence model. Impingement and film cooling are classical approaches generally adopted for turbine blade analysis. The existing film cooling techniques were compared with the proposed design, where a mini-channel was constructed inside the solid plate. The impact of the blowing ratio (M), Biot number (Bi) and temperature ratio (TR) on overall cooling performance was also studied.

Findings

Overall cooling effectiveness was always shown to be higher for mini-channel embedded film-cooled plates. The effectiveness increases with increasing the blowing ratio from M = 0.3 to 0.7, then decreases with increasing blowing ratio (M = 1 and 1.4) due to lift-off conditions. The mini-channel embedded plate resulted in an approximately 21% increase in area-weighted average overall effectiveness at a blowing ratio of 0.7 and Bi = 1.605. The lower uniform temperature was also found for all blowing ratios at a low Biot number, where conduction heat transfer significantly impacts total cooling effectiveness.

Originality/value

To the best of the authors’ knowledge, this study presents a novel approach to improve the cooling performances of a film-cooled flat plate with better cooling uniformity by using embedded mini-channels. Despite the widespread application of microchannels and mini-channels in thermal and fluid flow analysis, the application of mini-channels for blade cooling is not explored in detail.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 August 2023

Bo An and Junnan Wu

The purpose of this paper is to evaluate the effect of film cooling holes on the vibration characteristics of a turbine blade, and provide the design basis for the blade, which…

Abstract

Purpose

The purpose of this paper is to evaluate the effect of film cooling holes on the vibration characteristics of a turbine blade, and provide the design basis for the blade, which may reduce computing costs.

Design/methodology/approach

Modal analysis of the blades with and without film cooling holes is performed to evaluate the effect of film cooling holes on its natural frequency. Harmonic analysis of the blade is performed to calculate the stress concentration factors of film cooling holes for different modes.

Findings

The frequency differences between two blades with and without film cooling holes are insignificant, while the differences of the vibration stress cannot be neglected. For the first three modes of the blades, the stress concentration factor is sensitive to the hole’s shape and position on the blade. With the help of the stress concentration factor defined in this work, the concentration of stresses induced by different film cooling holes can be accurately described when evaluating HCF life of the turbine blade.

Originality/value

The effect of film cooling holes on a turbine blade's natural frequencies was confirmed to be insignificant and the stress concentration factors around the holes are calculated. Therefore, the simplified model of the blade without film cooling holes can be used to evaluate the natural frequencies and vibration stress, which saves a lot of time and cost.

Details

International Journal of Structural Integrity, vol. 14 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 2 May 2023

Jiafeng Lu, Xiaolin Deng, Jing Tang and Xiaoyun Chen

When processing 11Cr-3Co-3W martensitic heat-resistant steel, the traditional pouring cooling method often appears large cutting force, high cutting temperature, serious tool wear…

Abstract

Purpose

When processing 11Cr-3Co-3W martensitic heat-resistant steel, the traditional pouring cooling method often appears large cutting force, high cutting temperature, serious tool wear and poor surface quality. This paper aims to use new cooling methods for processing this problem.

Design/methodology/approach

Different performance indicators such as cutting force, tool wear and surface quality were measured and analysed under different continuous milling times. The relationship between liquid nitrogen flow and cutting force and surface roughness was analysed and measured.

Findings

The results show that with the increase of liquid nitrogen flow, the cutting force decreases, especially the Fx component, which decreases by 10%. When the liquid nitrogen flow reaches 8 L/min, the effect of increasing the liquid nitrogen flow on reducing the cutting force becomes smaller. The cutting force reduced by up to 15%, and the tool life increased up to 20% using liquid nitrogen cryogenic cooling than in cutting liquids cooling. When minimal quantities of lubricant (MQL) was added, the cutting force was reduced by 23%, and the tool life increased by 25%. When the cutting speed increases from 100 m/min to 250 m/min, the cutting force with cutting liquid cooling does not change significantly while the cutting force with liquid nitrogen cooling decreases with the cutting speed increasing. It shows that liquid nitrogen cooling is more suitable for high-speed machining. After the cutting length reaches 66 m, the surface roughness of the workpiece using liquid nitrogen cooling method larger than that of the cutting liquid cooling method. When MQL is added into liquid nitrogen, the lubrication performance is improved, and the surface roughness of the workpiece is reduced about 8%.

Originality/value

Many studies had focused on the improvement of tool life and surface quality by different cooling methods, or on the injection process and chip mechanism. However, there are few relevant studies on the variation of cooling and lubrication properties with the change of cutting length in liquid nitrogen cryogenic processing. In this research, different performance indicators such as cutting force, tool wear and surface quality were measured and analysed under different continuous milling times. The relationship between liquid nitrogen flow and cutting force and surface roughness was analysed and measured.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2023-0053/

Details

Industrial Lubrication and Tribology, vol. 75 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 5 December 2022

Srinivas M.V.V., Mudragada Hari Surya, Devendra Pratap Singh, Pratibha Biswal and Sathi Rajesh Reddy

The purpose of this study is to explore the mist-air film cooling performance on a three-dimensional (3-D) flat plate. In mist-air film cooling technique, a small amount of water…

Abstract

Purpose

The purpose of this study is to explore the mist-air film cooling performance on a three-dimensional (3-D) flat plate. In mist-air film cooling technique, a small amount of water droplets is injected along with the coolant air. The objective is to study the influence of shape of the coolant hole and operating conditions on the cooling effectiveness.

Design/methodology/approach

In this study, 3-D numerical simulations are performed. To simulate the mist-air film cooling over a flat plate, air is considered as a continuous phase and mist is considered as a discrete phase. Turbulence in the flow is accounted using Reynolds averaged Navier–Stokes equation and is modeled using k–e model with enhanced wall treatment.

Findings

The results of this study show that, for cylindrical coolant hole, coolant with 5% mist concentration is not effective for mainstream temperatures above 600 K, whereas for fan-shaped hole, even 2% mist concentration has shown significant impact on cooling effectiveness for temperatures up to 1,000 K. For given mist-air coolant flow conditions, different trend in effectiveness is observed for cylindrical and fan-shaped coolant hole with respect to main stream temperature.

Research limitations/implications

This study is limited to a flat plate geometry with single coolant hole.

Practical implications

The motivation of this study comes from the requirement of high efficiency cooling techniques for cooling of gas turbine blades. This study aims to study the performance of mist-air film cooling at different geometric and operating conditions.

Originality/value

The originality of this study lies in studying the effect of parameters such as mist concentration, droplet size and blowing ratio on cooling performance, particularly at high mainstream temperatures. In addition, a systematic performance comparison is presented between the cylindrical and fan-shaped cooling hole geometries.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 January 2024

Qing Jiang, Yuhang Wan, Xiaoqian Li, Xueru Qu, Shengnan Ouyang, Yi Qin, Zhenyu Zhu, Yushu Wang, Hualing He and Zhicai Yu

This study aims to evaluate the thermal performance of sodium alginate (SA) aerogel attached to nano SiO2 and its radiative cooling effect on firefighting clothing without…

Abstract

Purpose

This study aims to evaluate the thermal performance of sodium alginate (SA) aerogel attached to nano SiO2 and its radiative cooling effect on firefighting clothing without environmental pollution.

Design/methodology/approach

SA/SiO2 aerogel with refractory heat insulation and enhanced radiative cooling performance was fabricated by freeze-drying method, which can be used in firefighting clothing. The microstructure, chemical composition, thermal stability, and thermal emissivity were analyzed using Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analyzer and infrared emissivity measurement instrument. The radiative cooling effect of aerogel was studied using thermal infrared imager and thermocouple.

Findings

When the addition of SiO2 is 25% of SA, the prepared aerogel has excellent heat insulation and a high radiative cooling effect. Under a clear sky, the temperature of SA/SiO2 aerogel is 9.4°C lower than that of pure SA aerogel and 22.1°C lower than that of the simulated environment. In addition, aerogel has more exceptional heat insulation effect than other common fabrics in the heat insulation performance test.

Research limitations/implications

SA/SiO2 aerogel has passive radiative cooling function, which can efficaciously economize global energy, and it is paramount to environment-friendly cooling.

Practical implications

This method could pave the way for high-performance cooling materials designed for firefighting clothing to keep maintain the wearing comfort of firefighters.

Originality/value

SA/SiO2 aerogel used in firefighting clothing can release heat to the low-temperature outer space in the form of thermal radiation to achieve its own cooling purpose, without additional energy supply.

Graphical abstract

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 13 June 2023

Fayaz Kharadi, Karthikeyan A, Virendra Bhojwani, Prachi Dixit, Nand Jee Kanu and Nidhi Jain

The purpose of this study is to achieve lower and lower temperature as infrared sensors works faster and better used for space application. For getting good quality images from…

Abstract

Purpose

The purpose of this study is to achieve lower and lower temperature as infrared sensors works faster and better used for space application. For getting good quality images from space, the infrared sensors are need to keep in cryogenic temperature. Cooling to cryogenic temperatures is necessary for space-borne sensors used for space applications. Infrared sensors work faster or better at lower temperatures. It is the need for time to achieve lower and lower temperatures.

Design/methodology/approach

This study presents the investigation of the critical Stirling cryocooler parameters that influence the cold end temperature. In the paper, the design approach, the dimensions gained through thermal analysis, experimental procedure and testing results are discussed.

Findings

The effect of parameters such as multilayer insulation, helium gas charging pressure, compressor input voltage and cooling load was investigated. The performance of gold-plated and aluminized multilayer insulation is checked. The tests were done with multilayer insulation covering inside and outside the Perspex cover.

Practical implications

By using aluminized multilayer insulation inside and outside the Perspex cover, the improvement of 16 K in cool-down temperature was achieved. The cryocooler is charged with helium gas. The pressure varies between 14 and 18 bar. The optimum cooling is obtained for 17 bar gas pressure. The piston stroke increased as the compressor voltage increased, resulting in total helium gas compression. The optimum cool-down temperature was attained at 85 V.

Originality/value

The cryocooler is designed to achieve the cool-down temperature of 2 W cooling load at 100 K. The lowest cool-down temperature recorded was 105 K at a 2 W cooling load. Multilayer insulation is the major item that keeps the thermal radiation from the sun from reaching the copper tip.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 28 February 2023

Abeer Mithal, Niroj Maharjan and Sridhar Idapalapati

This study aims to investigate the effect of mechanical peening on the cooling rate of a subsequently deposited layer in a hybrid additive manufacturing (AM) process.

Abstract

Purpose

This study aims to investigate the effect of mechanical peening on the cooling rate of a subsequently deposited layer in a hybrid additive manufacturing (AM) process.

Design/methodology/approach

In this experimental study, 20 layers of 316 L stainless steel are built via directed energy deposition, with the tenth layer being subject to various peening processes (shot peening, hammer peening and laser shock peening). The microstructure of the eleventh layer of all the samples is then characterized to estimate the cooling rate.

Findings

The measurements indicate that the application of interlayer peening causes a reduction in primary cellular arm spacing and an increase in micro segregation as compared to a sample prepared without interlayer peening. Both factors indicate an increase in the cooling rate brought about by the interlayer peening.

Practical implications

This work provides insight into process design for hybrid AM processes as cooling rates are known to influence mechanical properties in laser-based AM.

Originality/value

To the best of the authors’ knowledge, this work is the first of its kind to evaluate the effects of interlayer peening on a subsequently deposited layer in a hybrid AM process.

Details

Rapid Prototyping Journal, vol. 29 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 1000