Search results

1 – 10 of 570
Article
Publication date: 19 April 2024

Mahesh Gaikwad, Suvir Singh, N. Gopalakrishnan, Pradeep Bhargava and Ajay Chourasia

This study investigates the impact of the fire decay phase on structural damage using the sectional analysis method. The primary objective of this work is to forecast the…

Abstract

Purpose

This study investigates the impact of the fire decay phase on structural damage using the sectional analysis method. The primary objective of this work is to forecast the non-dimensional capacity parameters for the axial and flexural load-carrying capacity of reinforced concrete (RC) sections for heating and the subsequent post-heating phase (decay phase) of the fire.

Design/methodology/approach

The sectional analysis method is used to determine the moment and axial capacities. The findings of sectional analysis and heat transfer for the heating stage are initially validated, and the analysis subsequently proceeds to determine the load capacity during the fire’s heating and decay phases by appropriately incorporating non-dimensional sectional and material parameters. The numerical analysis includes four fire curves with different cooling rates and steel percentages.

Findings

The study’s findings indicate that the rate at which the cooling process occurs after undergoing heating substantially impacts the axial and flexural capacity. The maximum degradation in axial and flexural capacity occurred in the range of 15–20% for cooling rates of 3 °C/min and 5 °C/min as compared to the capacity obtained at 120 min of heating for all steel percentages. As the fire cooling rate reduced to 1 °C/min, the highest deterioration in axial and flexural capacity reached 48–50% and 42–46%, respectively, in the post-heating stage.

Research limitations/implications

The established non-dimensional parameters for axial and flexural capacity are limited to the analysed section in the study owing to the thermal profile, however, this can be modified depending on the section geometry and fire scenario.

Practical implications

The study primarily focusses on the degradation of axial and flexural capacity at various time intervals during the entire fire exposure, including heating and cooling. The findings obtained showed that following the completion of the fire’s heating phase, the structural capacity continued to decrease over the subsequent post-heating period. It is recommended that structural members' fire resistance designs encompass both the heating and cooling phases of a fire. Since the capacity degradation varies with fire duration, the conventional method is inadequate to design the load capacity for appropriate fire safety. Therefore, it is essential to adopt a performance-based approach while designing structural elements' capacity for the desired fire resistance rating. The proposed technique of using non-dimensional parameters will effectively support predicting the load capacity for required fire resistance.

Originality/value

The fire-resistant requirements for reinforced concrete structures are generally established based on standard fire exposure conditions, which account for the fire growth phase. However, it is important to note that concrete structures can experience internal damage over time during the decay phase of fires, which can be quantitatively determined using the proposed non-dimensional parameter approach.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 13 October 2023

Yun Liu, Xingyuan Wang and Heyu Qin

This paper aims to explore the matching effect of hospitality brand image (cool vs non-cool) and service agents (Artificial intelligence [AI] vs human staff) on brand attitude…

Abstract

Purpose

This paper aims to explore the matching effect of hospitality brand image (cool vs non-cool) and service agents (Artificial intelligence [AI] vs human staff) on brand attitude, with a focus on assessing the role of feeling right as a mediator and service failure as a moderator.

Design/methodology/approach

This paper tested the hypotheses through three experiments and a Supplementary Material experiment, which collectively involved 835 participants.

Findings

The results indicated that the adoption of AI by cool brands can foster the right feeling and enhance consumers’ positive brand attitudes. In contrast, employing human staff did not lead to improved brand attitudes toward non-cool brands. Furthermore, the study found that service failure moderated the matching effect between service agents and cool brand images on brand attitude. The matching effect was observed under successful service conditions, but it disappeared when service failure occurred.

Practical implications

The findings offer practical guidance for hospitality companies in choosing service agents based on brand image. Cool brands can swiftly transition to AI, reinforcing their modern, cutting-edge image. Traditional brands may delay AI adoption or integrate it strategically with human staff.

Originality/value

To the best of the authors’ knowledge, this paper represents one of the first studies to address the issue of selecting the optimal service agent based on hospitality brand image. More importantly, it introduces the concept of a cool hospitality brand image as a boundary condition in the framework of AI research, providing novel insights into consumers’ ambivalent responses to AI observed in previous studies.

Details

International Journal of Contemporary Hospitality Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0959-6119

Keywords

Article
Publication date: 13 June 2023

Fayaz Kharadi, Karthikeyan A, Virendra Bhojwani, Prachi Dixit, Nand Jee Kanu and Nidhi Jain

The purpose of this study is to achieve lower and lower temperature as infrared sensors works faster and better used for space application. For getting good quality images from…

Abstract

Purpose

The purpose of this study is to achieve lower and lower temperature as infrared sensors works faster and better used for space application. For getting good quality images from space, the infrared sensors are need to keep in cryogenic temperature. Cooling to cryogenic temperatures is necessary for space-borne sensors used for space applications. Infrared sensors work faster or better at lower temperatures. It is the need for time to achieve lower and lower temperatures.

Design/methodology/approach

This study presents the investigation of the critical Stirling cryocooler parameters that influence the cold end temperature. In the paper, the design approach, the dimensions gained through thermal analysis, experimental procedure and testing results are discussed.

Findings

The effect of parameters such as multilayer insulation, helium gas charging pressure, compressor input voltage and cooling load was investigated. The performance of gold-plated and aluminized multilayer insulation is checked. The tests were done with multilayer insulation covering inside and outside the Perspex cover.

Practical implications

By using aluminized multilayer insulation inside and outside the Perspex cover, the improvement of 16 K in cool-down temperature was achieved. The cryocooler is charged with helium gas. The pressure varies between 14 and 18 bar. The optimum cooling is obtained for 17 bar gas pressure. The piston stroke increased as the compressor voltage increased, resulting in total helium gas compression. The optimum cool-down temperature was attained at 85 V.

Originality/value

The cryocooler is designed to achieve the cool-down temperature of 2 W cooling load at 100 K. The lowest cool-down temperature recorded was 105 K at a 2 W cooling load. Multilayer insulation is the major item that keeps the thermal radiation from the sun from reaching the copper tip.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 14 February 2023

Mansoure Dormohamadi, Mansoureh Tahbaz and Azin Velashjerdi Farahani

Life experience in hot and arid areas of Iran has proved that in the transitional seasons (spring and autumn) in which the climate is not too hot, passive cooling systems such as…

118

Abstract

Purpose

Life experience in hot and arid areas of Iran has proved that in the transitional seasons (spring and autumn) in which the climate is not too hot, passive cooling systems such as windcatchers (baadgir) have functioned well. This paper intends to investigate the efficiency of a single-side windcatcher as a passive cooling strategy; the case study is the Bina House windcatcher, located in Khousf town, near Birjand city, Iran.

Design/methodology/approach

To achieve the aim, air temperature, relative humidity, wind data and mean radiant temperature were measured by the related tools over five days from September 23 to October 23. Then, the thermal performance of the windcatcher was examined by analyzing the effects of all these factors on human thermal comfort. Quantitative assessment of the indoor environment was estimated using DesignBuilder and its computational fluid dynamics (CFD) tool, a thermal comfort simulation method to compare the cooling potential of the windcatcher. Windcatcher performance was then compared with two other common cooling systems in the area: single-side window, and evaporative cooler.

Findings

The results showed that both windcatcher and evaporative cooler can provide thermal comfort for Khousf residents in the transitional seasons; but the difference is that an evaporative cooler needs to consume water and electricity power, while a windcatcher is a passive cooling system that uses clean energy of wind.

Originality/value

The present study, by quantitative study of single-side windcatchers in a desert region, measured the climatic factors of a historical house and compared it with thermal comfort criteria. Therefore, the results of field measurements were analyzed, and the efficiency of the windcatcher was compared with two other cooling systems, namely single-side ventilation and evaporative cooler, in the two seasons of summer and autumn (transition seasons).

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 18 April 2023

Sundus Shareef, Emad S. Mushtaha, Saleh Abu Dabous and Imad Alsyouf

This paper investigates thermal mass performance (TMP) in hot climates. The impact of using precast concrete (PC) as a core envelope with different insulation materials has been…

Abstract

Purpose

This paper investigates thermal mass performance (TMP) in hot climates. The impact of using precast concrete (PC) as a core envelope with different insulation materials has been studied. The aim is to find the effect of building mass with different weights on indoor energy consumption, specifically cooling load in hot climates.

Design/methodology/approach

This research adopted a case study and simulation methods to find out the efficiency of different mass performances in hot and humid climate conditions. Different scenarios of light, moderate and heavyweight mass using PC have been developed and simulated. The impact of these scenarios on indoor cooling load has been investigated using the integrated environment solution-virtual environment (IES-VE) software.

Findings

The results showed that adopting a moderate weight mass of two PC sheets and a cavity layer in between can reduce indoor air temperature by 1.17 °C; however, this type of mass may increase the cooling demand. On the other hand, it has been proven that adopting a heavyweight mass for building envelopes and increasing the insulation material has a significant impact on reducing the cooling load. Using a PC Sandwich panel and increasing the insulation material layers for external walls and thickness by 50 mm will reduce the cooling load by 15.8%. Therefore, the heavyweight mass is more efficient compared to lightweight and moderate mass in hot, humid climate areas such as the UAE, in spite of the positive indoor TMP that can be provided by the lightweight mass in reducing the indoor air temperature in the summer season.

Originality/value

This research contributes to the thermal mass concept as one of these strategies that have recently been adopted to optimize the thermal performance of buildings and developments. Efficient TMP can have a massive impact on reducing energy consumption. However, less work has investigated TMP in hot and humid climate conditions. Furthermore, the impact of the PC on indoor thermal performance within hot climate areas has not been studied yet. The findings of this study on TMP in the summer season can be generated in all hot climate zones, and investigating the TMP in other seasons can be extended in future studies.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 29 March 2024

Pratheek Suresh and Balaji Chakravarthy

As data centres grow in size and complexity, traditional air-cooling methods are becoming less effective and more expensive. Immersion cooling, where servers are submerged in a…

Abstract

Purpose

As data centres grow in size and complexity, traditional air-cooling methods are becoming less effective and more expensive. Immersion cooling, where servers are submerged in a dielectric fluid, has emerged as a promising alternative. Ensuring reliable operations in data centre applications requires the development of an effective control framework for immersion cooling systems, which necessitates the prediction of server temperature. While deep learning-based temperature prediction models have shown effectiveness, further enhancement is needed to improve their prediction accuracy. This study aims to develop a temperature prediction model using Long Short-Term Memory (LSTM) Networks based on recursive encoder-decoder architecture.

Design/methodology/approach

This paper explores the use of deep learning algorithms to predict the temperature of a heater in a two-phase immersion-cooled system using NOVEC 7100. The performance of recursive-long short-term memory-encoder-decoder (R-LSTM-ED), recursive-convolutional neural network-LSTM (R-CNN-LSTM) and R-LSTM approaches are compared using mean absolute error, root mean square error, mean absolute percentage error and coefficient of determination (R2) as performance metrics. The impact of window size, sampling period and noise within training data on the performance of the model is investigated.

Findings

The R-LSTM-ED consistently outperforms the R-LSTM model by 6%, 15.8% and 12.5%, and R-CNN-LSTM model by 4%, 11% and 12.3% in all forecast ranges of 10, 30 and 60 s, respectively, averaged across all the workloads considered in the study. The optimum sampling period based on the study is found to be 2 s and the window size to be 60 s. The performance of the model deteriorates significantly as the noise level reaches 10%.

Research limitations/implications

The proposed models are currently trained on data collected from an experimental setup simulating data centre loads. Future research should seek to extend the applicability of the models by incorporating time series data from immersion-cooled servers.

Originality/value

The proposed multivariate-recursive-prediction models are trained and tested by using real Data Centre workload traces applied to the immersion-cooled system developed in the laboratory.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 January 2024

Qing Jiang, Yuhang Wan, Xiaoqian Li, Xueru Qu, Shengnan Ouyang, Yi Qin, Zhenyu Zhu, Yushu Wang, Hualing He and Zhicai Yu

This study aims to evaluate the thermal performance of sodium alginate (SA) aerogel attached to nano SiO2 and its radiative cooling effect on firefighting clothing without…

Abstract

Purpose

This study aims to evaluate the thermal performance of sodium alginate (SA) aerogel attached to nano SiO2 and its radiative cooling effect on firefighting clothing without environmental pollution.

Design/methodology/approach

SA/SiO2 aerogel with refractory heat insulation and enhanced radiative cooling performance was fabricated by freeze-drying method, which can be used in firefighting clothing. The microstructure, chemical composition, thermal stability, and thermal emissivity were analyzed using Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analyzer and infrared emissivity measurement instrument. The radiative cooling effect of aerogel was studied using thermal infrared imager and thermocouple.

Findings

When the addition of SiO2 is 25% of SA, the prepared aerogel has excellent heat insulation and a high radiative cooling effect. Under a clear sky, the temperature of SA/SiO2 aerogel is 9.4°C lower than that of pure SA aerogel and 22.1°C lower than that of the simulated environment. In addition, aerogel has more exceptional heat insulation effect than other common fabrics in the heat insulation performance test.

Research limitations/implications

SA/SiO2 aerogel has passive radiative cooling function, which can efficaciously economize global energy, and it is paramount to environment-friendly cooling.

Practical implications

This method could pave the way for high-performance cooling materials designed for firefighting clothing to keep maintain the wearing comfort of firefighters.

Originality/value

SA/SiO2 aerogel used in firefighting clothing can release heat to the low-temperature outer space in the form of thermal radiation to achieve its own cooling purpose, without additional energy supply.

Graphical abstract

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 30 October 2023

Melanie Moore Koskie, Ryan E. Freling, William B. Locander and Traci H. Freling

This study aims to explore and extend the consumer–brand relationship literature by integrating the relatively new construct of brand coolness with a growing body of work on…

Abstract

Purpose

This study aims to explore and extend the consumer–brand relationship literature by integrating the relatively new construct of brand coolness with a growing body of work on gratitude. Specifically, gratitude is explored alongside emotional brand attachment as an additional mechanism affecting the relationship between cool brands and the loyalty outcome of repurchase intention. Consumption context is examined as a boundary condition to the effect of gratitude.

Design/methodology/approach

Data was collected from an online survey of a Qualtrics panel of 356 US consumers. A moderated mediation model is used to explain the effects of brand coolness on repurchase intention via emotional brand attachment and brand gratitude in the moderating presence of consumption context.

Findings

Brand coolness significantly increases repurchase intention. Furthermore, emotional brand attachment and brand gratitude are established as parallel mediators of the relationship between brand coolness and repurchase intention, with brand gratitude exhibiting a significantly stronger mediated effect. The impact of brand coolness on brand gratitude is moderated by social visibility, with publicly consumed cool brands stimulating greater brand gratitude than their privately consumed counterparts.

Originality/value

Brand gratitude is shown to influence repurchase intention independent of the impact exerted by consumers’ emotional brand attachment. Cognitive appraisal theory is used to distinguish brand gratitude from other mediators studied in consumer–brand relationships. Findings establish the moderating influence of the social visibility of the brand on the relationship between brand coolness and gratitude.

Details

Journal of Product & Brand Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1061-0421

Keywords

Article
Publication date: 16 May 2022

Gökçe Tomrukçu and Touraj Ashrafian

The residential buildings sector has a high priority in the climate change adaptation process due to significant CO2 emissions, high energy consumption and negative environmental…

356

Abstract

Purpose

The residential buildings sector has a high priority in the climate change adaptation process due to significant CO2 emissions, high energy consumption and negative environmental impacts. The article investigates how, conversely speaking, the residential buildings will be affected by climate change, and how to improve existing structures and support long-term decisions.

Design/methodology/approach

The climate dataset was created using the scenarios determined by the Intergovernmental Panel on Climate Change (IPCC), and this was used in the study. Different building envelope and Heating, Ventilating and Air Conditioning (HVAC) systems scenarios have been developed and simulated. Then, the best scenario was determined with comparative results, and recommendations were developed.

Findings

The findings reveal that future temperature-increase will significantly impact buildings' cooling and heating energy use. As the outdoor air temperatures increase due to climate change, the heating loads of the buildings decrease, and the cooling loads increase significantly. While the heating energy consumption of the house was calculated at 170.85 kWh/m2 in 2020, this value shall decrease significantly to 115.01 kWh/m2 in 2080. On the other hand, the cooling energy doubled between 2020 and 2080 and reached 106.95 kWh/m2 from 53.14 kWh/m2 measured in 2020.

Originality/value

Single-family houses constitute a significant proportion of the building stock. An in-depth analysis of such a building type is necessary to cope with the devastating consequences of climate change. The study developed and scrutinised energy performance improvement scenarios to define the climate change adaptation process' impact and proper procedure. The study is trying to create a strategy to increase the climate resistance capabilities of buildings and fill the gaps in this regard.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 4 December 2023

Abdulbasit Almhafdy and Abdullah Mohammed Alsehail

This paper investigates the optimization of window design factors (WDFs) in hospital buildings, particularly in government hospitals within the arid climate of the Qassim region…

Abstract

Purpose

This paper investigates the optimization of window design factors (WDFs) in hospital buildings, particularly in government hospitals within the arid climate of the Qassim region, with the aim of achieving a better cooling load reduction. Continuous monitoring of the hospital ward section is crucial due to patients' needs, requiring optimal indoor air quality and cooling load.

Design/methodology/approach

The study identifies the optimal conditions for WDF design to mitigate cooling load, including window-to-wall ratio (WWR), window orientation (WO), room size and U-value (thermal properties), effectively reduce energy consumption in terms of sensible cooling load (MWh/m2) and comply with local codes. Data collection involved a smart weather station, while the Integrated Environmental Solution Virtual Environment (IESVE) software facilitated the simulation process.

Findings

Key findings reveal that larger patient rooms were about 40% more energy-efficient than smaller rooms. The northern orientation showed lower energy consumption, and specific WWRs and glazing U-values significantly affected energy loads. In an analysis of U-value changes in energy performance based on the Saudi Building Code (SBC), the presented values did not meet the minimum energy consumption standards. For a valid 40% WWR with a thermal permeability of 2.89, 0.181 MWh/m2 was consumed, while for an invalid 100% WWR with the same permeability but facing the north, 0.156 MWh/m2 was consumed, which is considered an invalid practice. It is vital to follow prescribed standards to ensure energy efficiency and avoid unnecessary costs.

Originality/value

Focus lies in emphasizing the significance of adhering to prescribed standards, such as SBC, to guarantee energy efficiency and prevent unwarranted expenses. Additionally, the authors highlight the crucial role of optimizing glazing properties and allocating the WWR appropriately to achieve energy-efficient building design, accounting for diverse orientations and climatic conditions.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

1 – 10 of 570