Search results

1 – 10 of 706
Article
Publication date: 29 August 2022

Jianbin Xiong, Jinji Nie and Jiehao Li

This paper primarily aims to focus on a review of convolutional neural network (CNN)-based eye control systems. The performance of CNNs in big data has led to the development of…

Abstract

Purpose

This paper primarily aims to focus on a review of convolutional neural network (CNN)-based eye control systems. The performance of CNNs in big data has led to the development of eye control systems. Therefore, a review of eye control systems based on CNNs is helpful for future research.

Design/methodology/approach

In this paper, first, it covers the fundamentals of the eye control system as well as the fundamentals of CNNs. Second, the standard CNN model and the target detection model are summarized. The eye control system’s CNN gaze estimation approach and model are next described and summarized. Finally, the progress of the gaze estimation of the eye control system is discussed and anticipated.

Findings

The eye control system accomplishes the control effect using gaze estimation technology, which focuses on the features and information of the eyeball, eye movement and gaze, among other things. The traditional eye control system adopts pupil monitoring, pupil positioning, Hough algorithm and other methods. This study will focus on a CNN-based eye control system. First of all, the authors present the CNN model, which is effective in image identification, target detection and tracking. Furthermore, the CNN-based eye control system is separated into three categories: semantic information, monocular/binocular and full-face. Finally, three challenges linked to the development of an eye control system based on a CNN are discussed, along with possible solutions.

Originality/value

This research can provide theoretical and engineering basis for the eye control system platform. In addition, it also summarizes the ideas of predecessors to support the development of future research.

Details

Assembly Automation, vol. 42 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 13 May 2022

Qiang Zhang, Zijian Ye, Siyu Shao, Tianlin Niu and Yuwei Zhao

The current studies on remaining useful life (RUL) prediction mainly rely on convolutional neural networks (CNNs) and long short-term memories (LSTMs) and do not take full…

Abstract

Purpose

The current studies on remaining useful life (RUL) prediction mainly rely on convolutional neural networks (CNNs) and long short-term memories (LSTMs) and do not take full advantage of the attention mechanism, resulting in lack of prediction accuracy. To further improve the performance of the above models, this study aims to propose a novel end-to-end RUL prediction framework, called convolutional recurrent attention network (CRAN) to achieve high accuracy.

Design/methodology/approach

The proposed CRAN is a CNN-LSTM-based model that effectively combines the powerful feature extraction ability of CNN and sequential processing capability of LSTM. The channel attention mechanism, spatial attention mechanism and LSTM attention mechanism are incorporated in CRAN, assigning different attention coefficients to CNN and LSTM. First, features of the bearing vibration data are extracted from both time and frequency domain. Next, the training and testing set are constructed. Then, the CRAN is trained offline using the training set. Finally, online RUL estimation is performed by applying data from the testing set to the trained CRAN.

Findings

CNN-LSTM-based models have higher RUL prediction accuracy than CNN-based and LSTM-based models. Using a combination of max pooling and average pooling can reduce the loss of feature information, and in addition, the structure of the serial attention mechanism is superior to the parallel attention structure. Comparing the proposed CRAN with six different state-of-the-art methods, for the predicted results of two testing bearings, the proposed CRAN has an average reduction in the root mean square error of 57.07/80.25%, an average reduction in the mean absolute error of 62.27/85.87% and an average improvement in score of 12.65/6.57%.

Originality/value

This article provides a novel end-to-end rolling bearing RUL prediction framework, which can provide a reference for the formulation of bearing maintenance programs in the industry.

Details

Assembly Automation, vol. 42 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 19 April 2023

Tarek Sallam

The purpose of this paper is to present a deep-learning-based beamforming method for phased array weather radars, especially whose antenna arrays are equipped with large number of…

77

Abstract

Purpose

The purpose of this paper is to present a deep-learning-based beamforming method for phased array weather radars, especially whose antenna arrays are equipped with large number of elements, for fast and accurate detection of weather observations.

Design/methodology/approach

The beamforming weights are computed by a convolutional neural network (CNN), which is trained with input–output pairs obtained from the Wiener solution.

Findings

To validate the robustness of the CNN-based beamformer, it is compared with the traditional beamforming methods, namely, Fourier (FR) beamforming and Capon beamforming. Moreover, the CNN is compared with a radial basis function neural network (RBFNN) which is a shallow type of neural network. It is shown that the CNN method has an excellent performance in radar signal simulations compared to the other methods. In addition to simulations, the robustness of the CNN beamformer is further validated by using real weather data collected by the phased array radar at Osaka University (PAR@OU) and compared to, besides the FR and RBFNN methods, the minimum mean square error beamforming method. It is shown that the CNN has the ability to rapidly and accurately detect the reflectivity of the PAR@OU with even less clutter level in comparison to the other methods.

Originality/value

Motivated by the inherit advantages of the CNN, this paper proposes the development of a CNN-based approach to the beamforming of PAR using both simulated and real data. In this paper, the CNN is trained on the optimum weights of Wiener solution. In simulations, it is applied on a large 32 × 32 planar phased array antenna. Moreover, it is operated on real data collected by the PAR@OU.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 February 2021

Sathies Kumar Thangarajan and Arun Chokkalingam

The purpose of this paper is to develop an efficient brain tumor detection model using the beneficial concept of hybrid classification using magnetic resonance imaging (MRI…

149

Abstract

Purpose

The purpose of this paper is to develop an efficient brain tumor detection model using the beneficial concept of hybrid classification using magnetic resonance imaging (MRI) images Brain tumors are the most familiar and destructive disease, resulting to a very short life expectancy in their highest grade. The knowledge and the sudden progression in the area of brain imaging technologies have perpetually ready for an essential role in evaluating and concentrating the novel perceptions of brain anatomy and operations. The system of image processing has prevalent usage in the part of medical science for enhancing the early diagnosis and treatment phases.

Design/methodology/approach

The proposed detection model involves five main phases, namely, image pre-processing, tumor segmentation, feature extraction, third-level discrete wavelet transform (DWT) extraction and detection. Initially, the input MRI image is subjected to pre-processing using different steps called image scaling, entropy-based trilateral filtering and skull stripping. Image scaling is used to resize the image, entropy-based trilateral filtering extends to eradicate the noise from the digital image. Moreover, skull stripping is done by Otsu thresholding. Next to the pre-processing, tumor segmentation is performed by the fuzzy centroid-based region growing algorithm. Once the tumor is segmented from the input MRI image, feature extraction is done, which focuses on the first-order and higher-order statistical measures. In the detection side, a hybrid classifier with the merging of neural network (NN) and convolutional neural network (CNN) is adopted. Here, NN takes the first-order and higher-order statistical measures as input, whereas CNN takes the third level DWT image as input. As an improvement, the number of hidden neurons of both NN and CNN is optimized by a novel meta-heuristic algorithm called Crossover Operated Rooster-based Chicken Swarm Optimization (COR-CSO). The AND operation of outcomes obtained from both optimized NN and CNN categorizes the input image into two classes such as normal and abnormal. Finally, a valuable performance evaluation will prove that the performance of the proposed model is quite good over the entire existing model.

Findings

From the experimental results, the accuracy of the suggested COR-CSO-NN + CNN was seemed to be 18% superior to support vector machine, 11.3% superior to NN, 22.9% superior to deep belief network, 15.6% superior to CNN and 13.4% superior to NN + CNN, 11.3% superior to particle swarm optimization-NN + CNN, 9.2% superior to grey wolf optimization-NN + CNN, 5.3% superior to whale optimization algorithm-NN + CNN and 3.5% superior to CSO-NN + CNN. Finally, it was concluded that the suggested model is superior in detecting brain tumors effectively using MRI images.

Originality/value

This paper adopts the latest optimization algorithm called COR-CSO to detect brain tumors using NN and CNN. This is the first study that uses COR-CSO-based optimization for accurate brain tumor detection.

Article
Publication date: 17 February 2022

Prajakta Thakare and Ravi Sankar V.

Agriculture is the backbone of a country, contributing more than half of the sector of economy throughout the world. The need for precision agriculture is essential in evaluating…

Abstract

Purpose

Agriculture is the backbone of a country, contributing more than half of the sector of economy throughout the world. The need for precision agriculture is essential in evaluating the conditions of the crops with the aim of determining the proper selection of pesticides. The conventional method of pest detection fails to be stable and provides limited accuracy in the prediction. This paper aims to propose an automatic pest detection module for the accurate detection of pests using the hybrid optimization controlled deep learning model.

Design/methodology/approach

The paper proposes an advanced pest detection strategy based on deep learning strategy through wireless sensor network (WSN) in the agricultural fields. Initially, the WSN consisting of number of nodes and a sink are clustered as number of clusters. Each cluster comprises a cluster head (CH) and a number of nodes, where the CH involves in the transfer of data to the sink node of the WSN and the CH is selected using the fractional ant bee colony optimization (FABC) algorithm. The routing process is executed using the protruder optimization algorithm that helps in the transfer of image data to the sink node through the optimal CH. The sink node acts as the data aggregator and the collection of image data thus obtained acts as the input database to be processed to find the type of pest in the agricultural field. The image data is pre-processed to remove the artifacts present in the image and the pre-processed image is then subjected to feature extraction process, through which the significant local directional pattern, local binary pattern, local optimal-oriented pattern (LOOP) and local ternary pattern (LTP) features are extracted. The extracted features are then fed to the deep-convolutional neural network (CNN) in such a way to detect the type of pests in the agricultural field. The weights of the deep-CNN are tuned optimally using the proposed MFGHO optimization algorithm that is developed with the combined characteristics of navigating search agents and the swarming search agents.

Findings

The analysis using insect identification from habitus image Database based on the performance metrics, such as accuracy, specificity and sensitivity, reveals the effectiveness of the proposed MFGHO-based deep-CNN in detecting the pests in crops. The analysis proves that the proposed classifier using the FABC+protruder optimization-based data aggregation strategy obtains an accuracy of 94.3482%, sensitivity of 93.3247% and the specificity of 94.5263%, which is high as compared to the existing methods.

Originality/value

The proposed MFGHO optimization-based deep-CNN is used for the detection of pest in the crop fields to ensure the better selection of proper cost-effective pesticides for the crop fields in such a way to increase the production. The proposed MFGHO algorithm is developed with the integrated characteristic features of navigating search agents and the swarming search agents in such a way to facilitate the optimal tuning of the hyperparameters in the deep-CNN classifier for the detection of pests in the crop fields.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 16 August 2022

Houlai Lin, Liang Li, Kaiqi Meng, Chunli Li, Liang Xu, Zhiliang Liu and Shibao Lu

This paper aims to develop an effective framework which combines Bayesian optimized convolutional neural networks (BOCNN) with Monte Carlo simulation for slope reliability…

138

Abstract

Purpose

This paper aims to develop an effective framework which combines Bayesian optimized convolutional neural networks (BOCNN) with Monte Carlo simulation for slope reliability analysis.

Design/methodology/approach

The Bayesian optimization technique is firstly used to find the optimal structure of CNN based on the empirical CNN model established in a trial and error manner. The proposed methodology is illustrated through a two-layered soil slope and a cohesive slope with spatially variable soils at different scales of fluctuation.

Findings

The size of training data suite, T, has a significant influence on the performance of trained CNN. In general, a trained CNN with larger T tends to have higher coefficient of determination (R2) and smaller root mean square error (RMSE). The artificial neural networks (ANN) and response surface method (RSM) can provide comparable results to CNN models for the slope reliability where only two random variables are involved whereas a significant discrepancy between the slope failure probability (Pf) by RSM and that predicted by CNN has been observed for slope with spatially variable soils. The RSM cannot fully capture the complicated relationship between the factor of safety (FS) and spatially variable soils in an effective and efficient manner. The trained CNN at a smaller the scale of fluctuation (λ) exhibits a fairly good performance in predicting the Pf for spatially variable soils at higher λ with a maximum percentage error not more than 10%. The BOCNN has a larger R2 and a smaller RMSE than empirical CNN and it can provide results fairly equivalent to a direct Monte Carlo Simulation and therefore serves a promising tool for slope reliability analysis within spatially variable soils.

Practical implications

A geotechnical engineer could use the proposed method to perform slope reliability analysis.

Originality/value

Slope reliability can be efficiently and accurately analyzed by the proposed framework.

Article
Publication date: 30 September 2020

Li Xiaoling

In order to improve the weak recognition accuracy and robustness of the classification algorithm for brain-computer interface (BCI), this paper proposed a novel classification…

Abstract

Purpose

In order to improve the weak recognition accuracy and robustness of the classification algorithm for brain-computer interface (BCI), this paper proposed a novel classification algorithm for motor imagery based on temporal and spatial characteristics extracted by using convolutional neural networks (TS-CNN) model.

Design/methodology/approach

According to the proposed algorithm, a five-layer neural network model was constructed to classify the electroencephalogram (EEG) signals. Firstly, the author designed a motor imagery-based BCI experiment, and four subjects were recruited to participate in the experiment for the recording of EEG signals. Then, after the EEG signals were preprocessed, the temporal and spatial characteristics of EEG signals were extracted by longitudinal convolutional kernel and transverse convolutional kernels, respectively. Finally, the classification of motor imagery was completed by using two fully connected layers.

Findings

To validate the classification performance and efficiency of the proposed algorithm, the comparative experiments with the state-of-the-arts algorithms are applied to validate the proposed algorithm. Experimental results have shown that the proposed TS-CNN model has the best performance and efficiency in the classification of motor imagery, reflecting on the introduced accuracy, precision, recall, ROC curve and F-score indexes.

Originality/value

The proposed TS-CNN model accurately recognized the EEG signals for different tasks of motor imagery, and provided theoretical basis and technical support for the application of BCI control system in the field of rehabilitation exoskeleton.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 13 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 4 April 2016

Yang Lu, Shujuan Yi, Yurong Liu and Yuling Ji

This paper aims to design a multi-layer convolutional neural network (CNN) to solve biomimetic robot path planning problem.

1046

Abstract

Purpose

This paper aims to design a multi-layer convolutional neural network (CNN) to solve biomimetic robot path planning problem.

Design/methodology/approach

At first, the convolution kernel with different scales can be obtained by using the sparse auto encoder training algorithm; the parameter of the hidden layer is a series of convolutional kernel, and the authors use these kernels to extract first-layer features. Then, the authors get the second-layer features through the max-pooling operators, which improve the invariance of the features. Finally, the authors use fully connected layers of neural networks to accomplish the path planning task.

Findings

The NAO biomimetic robot respond quickly and correctly to the dynamic environment. The simulation experiments show that the deep neural network outperforms in dynamic and static environment than the conventional method.

Originality/value

A new method of deep learning based biomimetic robot path planning is proposed. The authors designed a multi-layer CNN which includes max-pooling layer and convolutional kernel. Then, the first and second layers features can be extracted by these kernels. Finally, the authors use the sparse auto encoder training algorithm to train the CNN so as to accomplish the path planning task of NAO robot.

Details

Assembly Automation, vol. 36 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 21 December 2021

Shanling Han, Shoudong Zhang, Yong Li and Long Chen

Intelligent diagnosis of equipment faults can effectively avoid the shutdown caused by equipment faults and improve the safety of the equipment. At present, the diagnosis of…

Abstract

Purpose

Intelligent diagnosis of equipment faults can effectively avoid the shutdown caused by equipment faults and improve the safety of the equipment. At present, the diagnosis of various kinds of bearing fault information, such as the occurrence, location and degree of fault, can be carried out by machine learning and deep learning and realized through the multiclassification method. However, the multiclassification method is not perfect in distinguishing similar fault categories and visual representation of fault information. To improve the above shortcomings, an end-to-end fault multilabel classification model is proposed for bearing fault diagnosis.

Design/methodology/approach

In this model, the labels of each bearing are binarized by using the binary relevance method. Then, the integrated convolutional neural network and gated recurrent unit (CNN-GRU) is employed to classify faults. Different from the general CNN networks, the CNN-GRU network adds multiple GRU layers after the convolutional layers and the pool layers.

Findings

The Paderborn University bearing dataset is utilized to demonstrate the practicability of the model. The experimental results show that the average accuracy in test set is 99.7%, and the proposed network is better than multilayer perceptron and CNN in fault diagnosis of bearing, and the multilabel classification method is superior to the multiclassification method. Consequently, the model can intuitively classify faults with higher accuracy.

Originality/value

The fault labels of each bearing are labeled according to the failure or not, the fault location, the damage mode and the damage degree, and then the binary value is obtained. The multilabel problem is transformed into a binary classification problem of each fault label by the binary relevance method, and the predicted probability value of each fault label is directly output in the output layer, which visually distinguishes different fault conditions.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 15 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 14 June 2022

Rie Isshiki, Ryota Kawamata, Shinji Wakao and Noboru Murata

The density method is one of the powerful topology optimization methods of magnetic devices. The density method has the advantage that it has a high degree of freedom of shape…

Abstract

Purpose

The density method is one of the powerful topology optimization methods of magnetic devices. The density method has the advantage that it has a high degree of freedom of shape expression which results in a high-performance design. On the other hand, it has also the drawback that unsuitable shapes for actually manufacturing are likely to be generated, e.g. checkerboards or grayscale. The purpose of this paper is to develop a method that enables topology optimization suitable for fabrication while taking advantage of the density method.

Design/methodology/approach

This study proposes a novel topology optimization method that combines convolutional neural network (CNN) as an effective smoothing filter with the density method and apply the method to the shield design with magnetic nonlinearity.

Findings

This study demonstrated some numerical examples verifying that the proposed method enables to efficiently obtain a smooth and easy-to-manufacture shield shape with high shielding ability. A network architecture suitable as smoothing filter was also exemplified.

Originality/value

In the field of magnetic field analysis, very few studies have verified the usefulness of smoothing by using CNN in the topology optimization of magnetic devices. This paper develops a novel topology optimization method that skillfully combines CNN with the nonlinear magnetic field analysis and also clarifies a suitable network architecture that makes it possible to obtain a target device shape that is easy to manufacture while minimizing the objective function value.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 706