Search results

1 – 10 of over 3000
Article
Publication date: 25 July 2019

Tianji Xing, Lixia Ying, Chunxi Wu, Zhen Fu and Guixiang Wang

The purpose of this paper is to improve binding force between the coating and the steel substrate by using chemical modification on the steel surface; at the same time, it can…

Abstract

Purpose

The purpose of this paper is to improve binding force between the coating and the steel substrate by using chemical modification on the steel surface; at the same time, it can also increase the corrosion resistance of the coating.

Design/methodology/approach

The main components of the conversion film include tannic acid, sodium molybdate and silane coupling agent KH560. After the preparation was completed, the samples were tested and analyzed, including surface morphology, conversion film components, bonding force with organic resins and corrosion resistance. Finally, it drew a conclusion that the conversion film can greatly improve the bonding strength of the steel substrate and epoxy resin.

Findings

When the content of tannic acid is 4 g/L meanwhile the content of KH560 is 20 g/L, the conversion film has the strongest binding force with epoxy resin, from 2.15 Mpa of untreated steel to 4.60 Mpa, growth of 140 per cent. At the same time, the resulting conversion film also improves the corrosion resistance of the steel surface by a small margin.

Originality/value

A method of enhancing the bond between an epoxy coating and steel is provided. Verify the mechanism of this method.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 11 October 2018

Zubin Xu, Yingwei Song, Kaihui Dong, Dayong Shan and En-Hou Han

The formation and corrosion processes of a conversion film on the AZ80 Mg alloy with different second phases were compared to clarify the effect of microstructure on the quality…

131

Abstract

Purpose

The formation and corrosion processes of a conversion film on the AZ80 Mg alloy with different second phases were compared to clarify the effect of microstructure on the quality of protective coatings.

Design/methodology/approach

The size and distribution of second phases in the edge and central regions of the AZ80 cast ingot exhibit a great difference. The film growth processes and their corrosion resistance on the edge and central regions of the AZ80 cast ingot were investigated by scanning electron microscope observations, immersion tests and electrochemical measurements.

Findings

The results indicate that second phases act as micro-cathodes and hydrogen evolution reaction occurs on their surface, which is not beneficial for the deposition of the conversion film.

Originality/value

The conversion film formed on the central regions of AZ80 cast ingot with a low volume fraction of second phases exhibits a more uniform surface and higher corrosion resistance than that formed on the edge regions of the sample with a higher volume fraction of second phases.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 7 November 2016

Fengjing Wu, Xiaojuan Liu and Xin Xiao

Magnesium alloys, although valuable, are reactive and require protection before its application in many fields. The purpose of this study was to evaluate a novel anticorrosive…

Abstract

Purpose

Magnesium alloys, although valuable, are reactive and require protection before its application in many fields. The purpose of this study was to evaluate a novel anticorrosive chemical conversion film on AZ80 magnesium alloy by environmental-friendly calcium series surface pretreatment.

Design/methodology/approach

The corrosion resistance of the film was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy in 3.5 Wt.% NaCl solution. The surface morphologies, microstructure and composition of the film were investigated by scanning electron microscopy and energy-dispersive spectroscopy.

Findings

The corrosion current density of the calcium series film decreased by more than one order of magnitude as compared to that of the AZ80 magnesium alloy. The conversion film presented dry-mud morphology, and its thickness was estimated to be approximately 4 μm. The conversion film was highly hydrophilic, and the organic coating adhesion on treated AZ80 surface was approximately 13.5 MPa.

Originality/value

Excellent performance of the calcium-based chemical conversion film on Mg alloy was obtained, which does not contain heavy metals or fluorides and completely conforms to European RoHS (Restriction of Hazardous Substances) standard.

Details

Anti-Corrosion Methods and Materials, vol. 63 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 30 July 2021

Lihong Bao, Suyi Cao and Lin Tu

This paper aims to provide a flexible polyurethane (PU) film with visible light trapping ability, photothermal conversion and energy storage performance by covalently bonded a…

Abstract

Purpose

This paper aims to provide a flexible polyurethane (PU) film with visible light trapping ability, photothermal conversion and energy storage performance by covalently bonded a visible light absorbing dye into the polymer through copolymerization.

Design/methodology/approach

For this target solution copolymerization of diphenyl-methane-diisocyanate (MDI), poly(1,4-butylene adipate) (PBA2000), polyethylene glycol (PEG) of different molecular weight, self-made dye, 1,4-butanediol (BuOH) was carried out in a flame-dried flask under an inert nitrogen (N2) atmosphere. First, an isocyanate-terminated prepolymer of dried PEG, MDI and PBA2000 was prepared in dimethylformamide and stirred for 1 h at 35°C. Then, self-made dye and 1, 4-butanediol (BuOH) were added and heated at 85°C for 3 h to get photothermal conversion polyurethane (PTPU) solution. Allowed the solution to dry at room temperature for seven days and then at 65°C for 12 h to get PTPU films.

Findings

The flexible PU films with photothermal conversion and energy storage performances were successfully synthesized and the functional films presented both excellent energy storage and mechanical property when the molecular weight of PEG was in the range of 6,000∼10,000.

Research limitations/implications

The materials that were used in this research paper had a reasonably low cost. Also, the procedures for the synthesis of dye and polymers were extremely easy because there was no need for high pressure or temperature and no dangerous solvents were used.

Practical implications

The photothermal conversion property and mechanical performance of the synthesized flexible PU films were characterized. The results have proved that these films were soft and elastic, and have certain photothermal conversion and energy storage ability, thus can be used in the surface finishing of special fabric and leather.

Originality/value

Visible light trapping photothermal conversion PU flexible film with energy storage capability was prepared for the first time.

Details

Pigment & Resin Technology, vol. 50 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 August 1998

M.O. Figueiredo and M.J. Carmezim

Corrosion resistance and artistic appearance of passive chromium oxide coatings developed over stainless steel by chemical conversion methods are revisited. Preparation technique…

728

Abstract

Corrosion resistance and artistic appearance of passive chromium oxide coatings developed over stainless steel by chemical conversion methods are revisited. Preparation technique and thermal processing of the films were optimized to improve protection efficiency and the control of colour development ‐ from yellow to green through violet ‐ is at present under study. Film structure and composition were studied by X‐ray diffraction and soft X‐ray absorption spectroscopy (XAS) using synchrotron radiation to assess element speciation. Surface microstructure was monitored by SEM observation. Enhanced passivation behaviour of thermally processed films is related to the formation of a spinel‐type phase after migration of manganese from the bulk steel to oxide coating surface.

Details

Pigment & Resin Technology, vol. 27 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 10 November 2023

Wensheng Li, Yiding Zhang, Yanwei Xu, Guangming Jiao, Dunwen Zuo, Wenting Lu, Quanshi Cheng, Jiaqi Yu and Yajun Chen

This study aims to investigate the effect of post-treatment on anti-corrosion performance of Al coating on the surface of Ti-6Al-4V (TC4) fastener.

Abstract

Purpose

This study aims to investigate the effect of post-treatment on anti-corrosion performance of Al coating on the surface of Ti-6Al-4V (TC4) fastener.

Design/methodology/approach

The Al coatings with different layer structures were prepared on TC4 by middle-frequency and direct-current combined magnetron sputtering. The cross-sectional morphology and surface roughness of coatings were characterized by scanning electron microscope and atomic force microscope. The corrosion resistance was evaluated by electrochemical method. The monolayer coating was post-treated by Alodine chemical conversion, Ar+ bombardment and a combination of two methods above.

Findings

The results show that the interfaces in bilayer and trilayer coatings reduce the defects. Ar+ bombardment reduces the corrosion current density, and Alodine chemical conversion leads to a higher pitting corrosion potential. The combined post-treatment has the highest polarization resistance.

Originality/value

The corrosion resistance of the Al coating is enhanced as the layer quantity increases. The combination of two post-treatments, Ar+ bombardment and Alodine chemical conversion, could achieve an overall improvement in corrosion resistance of Al coating.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 26 June 2009

Da‐jing Fang, Xu‐hui Mao, Ye‐ming Zhang, Zhi‐liang Chen, Min Liu and Fu‐xing Gan

The purpose of this paper is to study the compound effect between silane and cerium salts in the passivation process of chemical conversion treatment of zinc.

Abstract

Purpose

The purpose of this paper is to study the compound effect between silane and cerium salts in the passivation process of chemical conversion treatment of zinc.

Design/methodology/approach

Chemical conversion treatment using 3‐Glycidoxypropyltrimethoxysilane on zinc is investigated as an alternative treatment to chromate conversion. The surface chemistry of the silane‐treated samples is investigated with mass change measurements, polarization curves, electrochemical impedance spectroscopy (EIS) and the salt spray tests (SST). The surface morphology of samples was studied using a scanning electron microscope.

Findings

The polarization curves, EIS and SST data are in agreement. On the surface of zinc, the silane formed a compound with the cerium, thus enhancing the adhesion and corrosion resistance of the polymer film.

Originality/value

There have been few reports on the compound effects of silanes and cerium salts in the passivation process. The mechanism of this compound effect may be due to the ability of Ce3 + ions to gain access to the interface through tiny cracks or micropores in the cross‐linking structure of GPS polymer films on zinc, and the subsequent oxidation of Ce3 + to Ce4 + by H2O2 may result in a barrier effect between the electrolyte and the metallic substrate.

Details

Anti-Corrosion Methods and Materials, vol. 56 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 June 2015

Jie Sun and Gang Wang

The purpose of this paper was to prepare the cerium-based conversion coating on AZ91D magnesium alloy, and its compositions, micro-morphology, corrosion resistance and the…

Abstract

Purpose

The purpose of this paper was to prepare the cerium-based conversion coating on AZ91D magnesium alloy, and its compositions, micro-morphology, corrosion resistance and the chemical valence state of the film elements were investigated.

Design/methodology/approach

The methodology comprised preparation of coatings at different temperatures, which then were characterized using scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, an electrochemistry workstation and by means of X-ray photoelectron spectroscopy.

Findings

The conversion coating had a micro-cracked morphology. The conversion coatings were composed of MgO (or Mg-OH), CeO2 and Ce2O3. The best corrosion resistance of the cerium passivation film appeared when the treatment temperature was about 35°C.

Originality/value

The corrosion current densities of conversion coatings were lower by one to two orders of magnitude than the corrosion current density of the blank sample. The rare earth passivation coating prepared under the best condition could reduce the corrosion current to 3.548 × 10−6 A/cm2.

Details

Anti-Corrosion Methods and Materials, vol. 62 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 7 March 2016

Alireza Ghanbari and Mohammadreza Mohammadzade Attar

The purpose of this paper is to investigate the film formation mechanism of zirconium-based conversion layer on mild steel. In this way, different approaches were used to show the…

Abstract

Purpose

The purpose of this paper is to investigate the film formation mechanism of zirconium-based conversion layer on mild steel. In this way, different approaches were used to show the self-limiting film formation mechanism.

Design/methodology/approach

To determine this mechanism, film formation was detected using DC polarization, spectrophotometric technique and surface analysis techniques, including field emission scanning electron microscope (FE-SEM) and atomic force microscopy (AFM).

Findings

DC polarization resistance of surface increased with increasing of mild steel immersion time in the conversion coating bath, reaching to a plateau region. On the other hand, zirconium ion concentration decreased during the beginning of the film formation process and continued with a constant concentration, showing the expiry of the process after some minutes.

Originality/value

This paper deals with the film formation mechanism of the zirconium-based conversion layer that includes valuable findings to monitor the process.

Details

Anti-Corrosion Methods and Materials, vol. 63 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 14 February 2019

Xiaobo Wang, Zhipeng Li, Wen Zhan, Jesong Tu, Xiaohua Zuo, Xiangyi Deng and Boyi Gui

This study aims to expand the reliability and special functions of lightweight materials for high-end equipment and green manufacturing, so that it is the first such research to…

Abstract

Purpose

This study aims to expand the reliability and special functions of lightweight materials for high-end equipment and green manufacturing, so that it is the first such research to carry out nano-composite technology of nickel-coated carbon nanotubes (Ni-CNTs)-based titanium-zirconium chemical conversion on aluminum alloy substrate.

Design/methodology/approach

Corrosion behavior of various coatings was investigated using dropping corrosion test, linear polarization and electrochemical impedance spectroscopy. The results showed that the corrosion resistance of the nano-composite conversion coatings was significantly improved to compare with the conventional titanium-zirconium conversion coating. The morphology and microdomain characteristics of the nano-composite conversion coatings were characterized by SEM/eds/EPMA, which indicated that the CNT or Ni-CNTs addition promoting the integrity coverage of coatings in a short time.

Findings

Surface morphology of titanium-zirconium (Ti-Zr)/Ni-CNT specimens exhibited smooth, compact and little pores. The nano-composite conversion coatings are mainly composed of Al, O, C and Ti elements and contain a small amount of F and Zr elements, which illuminated that CNT or Ni-CNT addition could co-deposit with aluminum and titanium metal oxides.

Originality/value

The study of corrosion resistance of nano-composite conversion coatings and the micro-zone film-formation characteristics would be provided theoretical support for the development of basic research on surface treatment of aluminum alloys.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of over 3000