Search results

1 – 2 of 2
Article
Publication date: 19 April 2023

V.M. Jyothy and G. Jims John Wessley

In this study, 2D density-based SST K-turbulence model with compressibility effect is used to observe the flow separation and shock wave interactions of the flow. The wall static…

Abstract

Purpose

In this study, 2D density-based SST K-turbulence model with compressibility effect is used to observe the flow separation and shock wave interactions of the flow. The wall static pressure and Mach number differences are also evaluated. This study aims to discuss the aforementioned objectives

Design/methodology/approach

This study outlines the evaluation of the performance of a 2D convergent–divergent nozzle with various triangular jet tab configurations that can be used for effective thrust vectoring of aerial vehicles.

Findings

From the study, it is seen that the shadow effect induced by the tab with a height of 30% produces higher oblique wave deflection and higher thrust deflection at the exit nozzle. The numerical calculation concluded that thrust vector efficiency of 30% jet tab is, 0.46%. In the case of 10% jet tab height the thrust vector efficiency is higher, i.e. 1.647%.

Research limitations/implications

2D study.

Practical implications

The optimization will open up a new focus in TVC that can be implemented for effective attitude control in aircrafts.

Social implications

Used in future aircrafts.

Originality/value

The influence of shadowing ratio with different tab heights at different Mach numbers has not been reported in the previous studies. Few of the studies on jet tab are focused on the acoustic studies and not pertaining to the aerodynamic aspects. The multi jet configuration, the combination of location, shapes and other parametric analysis have not been covered in the previous studied.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 3 April 2024

Ashish Bhatt and Shripad P. Mahulikar

Aero-engine exhaust plume length can be more than the aircraft length, making it easier to detect and track by infrared seeker. Aim of this study is to analyze the effect of free…

Abstract

Purpose

Aero-engine exhaust plume length can be more than the aircraft length, making it easier to detect and track by infrared seeker. Aim of this study is to analyze the effect of free stream Mach number (M) on length of potential core of plume. Also, change in infrared (IR) signature of plume and aircraft surface with variation in elevation angle (θ) is examined.

Design/methodology/approach

Convergent divergent (CD) nozzle is located outside the rear fuselage of the aircraft. A two dimensional axisymmetric computational fluid dynamics (CFD) study was carried out to study effect of M on potential core. The CFD data with aircraft and plume was then used for IR signature analysis. The sensor position is changed with respect to aircraft from directly bottom towards frontal section of aircraft. The IR signature is studied in mid wave IR (MWIR) and long wave IR (LWIR) band.

Findings

The potential plume core length and width increases as M increases. At higher altitudes, the potential core length increases for a fixed M. The plume emits radiation in the MWIR band, whereas the aerodynamically heated aircraft surface emits IR in the LWIR band. The IR signature in the MWIR band continuously decreases as the sensor position changes from directly bottom towards frontal. In the LWIR band the IR signature initially decreases as the sensor moves from the directly bottom to the frontal, as the sensor begins to see the wing leading edges and nose cone, the IR signature in the LWIR band slightly increases.

Originality/value

The novelty of this study comes from the data reported on the effect of free stream Mach number on the potential plume core and variation of the overall IR signature of aircraft with change in elevation angle from directly below towards frontal section of aircraft.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Access

Year

Last 6 months (2)

Content type

1 – 2 of 2