Search results

1 – 10 of over 2000
Article
Publication date: 1 July 2014

Mehdi Bahiraei, Seyed Mostafa Hosseinalipour and Morteza Hangi

The purpose of this paper is to attempt to investigate the particle migration effects on nanofluid heat transfer considering Brownian and thermophoretic forces. It also tries to…

Abstract

Purpose

The purpose of this paper is to attempt to investigate the particle migration effects on nanofluid heat transfer considering Brownian and thermophoretic forces. It also tries to develop a model for prediction of the convective heat transfer coefficient.

Design/methodology/approach

A modified form of the single-phase approach was used in which an equation for mass conservation of particles, proposed by Buongiorno, has been added to the other conservation equations. Due to the importance of temperature in particle migration, temperature-dependent properties were applied. In addition, neural network was used to predict the convective heat transfer coefficient.

Findings

At greater volume fractions, the effect of wall heat flux change was more significant on nanofluid heat transfer coefficient, whereas this effect decreased at higher Reynolds numbers. The average convective heat transfer coefficient raised by increasing the Reynolds number and volume fraction. Considering the particle migration effects, higher heat transfer coefficient was obtained and also the concentration at the tube center was higher in comparison with the wall vicinity. Furthermore, the proposed neural network model predicted the heat transfer coefficient with great accuracy.

Originality/value

A review of the literature shows that in the single-phase approach, uniform concentration distribution has been used and the effects of particle migration have not been considered. In this study, nanofluid heat transfer was simulated by adding an equation to the conservation equations to consider particle migration. The effects of Brownian and thermophoretic forces have been considered in the energy equation. Moreover, a model is proposed for prediction of convective heat transfer coefficient.

Details

Engineering Computations, vol. 31 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 December 2017

Hasan Celik, Moghtada Mobedi, Oronzio Manca and Unver Ozkol

The purpose of this study is to determine interfacial convective heat transfer coefficient numerically, for a porous media consisting of square blocks in inline arrangement under…

Abstract

Purpose

The purpose of this study is to determine interfacial convective heat transfer coefficient numerically, for a porous media consisting of square blocks in inline arrangement under mixed convection heat transfer.

Design/methodology/approach

The continuity, momentum and energy equations are solved in dimensionless form for a representative elementary volume of porous media, numerically. The velocity and temperature fields for different values of porosity, Ri and Re numbers are obtained. The study is performed for the range of Ri number from 0.01 to 10, Re number from 100 to 500 and porosity value from 0.51 to 0.96. Based on the obtained results, the value of the interfacial convective heat transfer coefficient is calculated by using volume average method.

Findings

It was found that at low porosities (such as 0.51), the interfacial Nusselt number does not considerably change with Ri and Re numbers. However, for porous media with high Ri number and porosity (such as 10 and 0.51, respectively), secondary flows occur in the middle of the channel between rods improving heat transfer between solid and fluid, considerably. It is shown that the available correlations of interfacial heat transfer coefficient suggested for forced convection can be used for mixed convection for the porous media with low porosity (such as 0.51) or for the flow with low Ri number (such as 0.01).

Originality/value

To the best of the authors’ knowledge, there is no study on determination of interfacial convective heat transfer coefficient for mixed convection in porous media in literature. The present study might be the first study providing an accurate idea on the range of this important parameter, which will be useful particularly for researchers who study on mixed convection heat transfer in porous media, macroscopically.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 March 2016

Yanzhong Wang, Wentao Niu, Song Wei and Guanhua Song

This paper aims to improve the cooling performance of the impinging jet to the machining and power transmissions, and provides more parameters to the design of the cooling system…

Abstract

Purpose

This paper aims to improve the cooling performance of the impinging jet to the machining and power transmissions, and provides more parameters to the design of the cooling system.

Design/methodology/approach

A multiphase flow model with heat transfer terms is established to calculate the convective heat transfer coefficient. The computational fluid dynamics method is used to simulate the jet flow. The convective heat transfer coefficients with different spray parameters are calculated and their variations are obtained. Temperatures are tested to reflect the cooling performance (convective heat transfer coefficients) with different spray parameters.

Findings

The results show that the higher convective heat transfer coefficient can be obtained with the same flow rate by decreasing nozzle diameter while increasing either the number of nozzles or the oil supply pressure. The spray distance was found to have little influence on convective heat transfer; however, the more the spray is directed parallel to the surface, the higher the convective heat transfer coefficient. The computational results coincide well with the experimental results.

Originality/value

The research presented here leads to a design reference guideline that could be used in machining and power transmissions to reduce the temperature, thus improving their quality and efficiency, and preventing failure at high speeds and/or under heavy loads.

Details

Industrial Lubrication and Tribology, vol. 68 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 15 November 2011

Martin Hettegger, Bernhard Streibl, Oszkár Bíró and Harald Neudorfer

For an accurate simulation of the temperature distribution inside an electrical machine a method for deriving the convective heat transfer coefficient numerically would be…

Abstract

Purpose

For an accurate simulation of the temperature distribution inside an electrical machine a method for deriving the convective heat transfer coefficient numerically would be desirable. The purpose of this paper is to present a reliable simulation setup, which is able to reproduce the measured convective heat transfer coefficient at certain spots on the end windings of an electric machine.

Design/methodology/approach

The heat flux density on certain spots on the end windings of an induction motor have been measured with heat flux sensors, in order to find out the convective heat transfer coefficient. To identify the air mass flow inside a cooling duct of an encapsulated cooling circuit during the operation of the motor, the pressure loss inside the duct has been measured. The measured data for temperature and air mass flow have been used as boundary conditions for the identification of the convective heat transfer coefficient with a commercial software for computational fluid dynamics (CFD).

Findings

The measured data for the local convective heat transfer coefficients have been compared to the results of the numerical simulation for various rotational velocities. The quality of the simulated convective heat transfer coefficient depending on the rotational velocity meets the measured values. Owing to the used simplified model, the quantity of the measured values differ strongly around the simulated coefficient for the convective heat transfer.

Originality/value

The derivation of the convective heat transfer is a challenging subject in CFD but has become more reliable with the invention of the SST and the SAS‐SST turbulence model. In the present work, measurements on the end windings have been compared to simulation results derived with the SAS‐SST turbulence model.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 19 January 2021

Fengxia Lu, Meng Wang, Weizhen Liu, Heyun Bao and Rupeng Zhu

This paper aims to propose a numerical method to calculate the convective heat transfer coefficient of spiral bevel gears under the condition of splash lubrication and to reveal…

Abstract

Purpose

This paper aims to propose a numerical method to calculate the convective heat transfer coefficient of spiral bevel gears under the condition of splash lubrication and to reveal the lubrication and temperature characteristics between the gears and the oil-air two-phase flow.

Design/methodology/approach

Based on computational fluid dynamics, the multiple reference frames (MRF) method was used to simulate the rotational characteristics of gears and the motions of their surrounding fluid. The lubrication and temperature characteristics of gears were studied by combining the MRF method with the volume of the fluid multiphase flow model.

Findings

The convective heat transfer coefficient can be improved by increasing the rotational speed and the oil immersion depth. Moreover, the temperature of the tooth surface having a large convective heat transfer coefficient is also found to be low. A large convection heat transfer coefficient could lead to a good cooling effect.

Originality/value

This method can be used to obtain the convective heat transfer coefficient values at different meshing positions, different radii and different tooth surface positions. It also can provide research methods for improving the cooling effect of gears under the condition of splash lubrication.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2020-0233/

Details

Industrial Lubrication and Tribology, vol. 73 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 August 2016

Hsien-Hung Ting and Shuhn-Shyurng Hou

The purpose of this paper is to numerically investigate the convective heat transfer of water-based CuO nanofluids flowing through a square cross-section duct under constant heat

Abstract

Purpose

The purpose of this paper is to numerically investigate the convective heat transfer of water-based CuO nanofluids flowing through a square cross-section duct under constant heat flux in the turbulent flow regime.

Design/methodology/approach

The numerical simulation is carried out at various Peclet numbers and particle concentrations (0.1, 0.2, 0.5, and 0.8 vol%). The finite volume formulation is used with the semi-implicit method for pressure-linked equations algorithm to solve the discretized equations derived from the partial nonlinear differential equations of the mathematical model.

Findings

The heat transfer coefficients and Nusselt numbers of CuO-water nanofluids increase with increases in the Peclet number as well as particle volume concentration. Also, enhancement of the heat transfer coefficient is much greater than that of the effective thermal conductivity at the same nanoparticle concentration.

Research limitations/implications

Simulation of nanofluids turbulent forced convection at very high Reynolds number is worth for further study.

Practical implications

The heat transfer rates through non-circular ducts are smaller than the circular tubes. Nevertheless, the pressure drop of the non-circular duct is less than that of the circular tube. This study clearly presents that the nanoparticles suspended in water enhance the convective heat transfer coefficient, despite low volume fraction between 0.1 and 0.8 percent. Adding nanoparticles to conventional fluids may enhance heat transfer performance through the non-circular ducts, leading to extensive practical applications in industries for the non-circular ducts.

Originality/value

Few papers have numerically studied convective heat transfer properties of nanofluids through non-circular ducts. The present numerical results show a good agreement with the published experimental data.

Details

Engineering Computations, vol. 33 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 September 2012

Sheri Kurgin, Jean M. Dasch, Daniel L. Simon, Gary C. Barber and Qian Zou

The purpose of this paper is to evaluate the cooling ability of minimum quantity lubrication (MQL) cutting fluid.

1204

Abstract

Purpose

The purpose of this paper is to evaluate the cooling ability of minimum quantity lubrication (MQL) cutting fluid.

Design/methodology/approach

An experimental system is devised to find the heat transfer coefficient of MQL under simulated reaming conditions. Cooling rate of the specimen is measured with an infrared camera. The effect of air pressure and oil volume on cooling rate is tested. Metal cutting tests are performed to evaluate the effect of heat transfer coefficient on workpiece temperature.

Findings

Convective heat transfer coefficient for MQL increases with increasing air pressure. Oil volume has an indeterminate effect on the heat transfer coefficient; however, it is a dominant factor for controlling temperature during reaming.

Practical implications

The results of the study can provide guidance to optimize the temperature controlling ability of MQL for production.

Originality/value

There is limited information available in literature regarding the heat transfer coefficient of metal working fluids, particularly for MQL. In particular, experiments designed to investigate the effect of air pressure and oil volume on the heat transfer coefficient of the mist have not been previously documented. This information may be used to improve the overall cooling ability of MQL mist, thus increasing its effectiveness at controlling tool wear and maintaining part quality. The other major contribution of this work is to separate the role of the cooling and lubrication for controlling temperature while reaming aluminum. Prior to this study, there has been relatively little research performed for the reaming metal cutting operation, and still less for reaming with MQL. The nature of how metal working fluids control temperature is not fully understood, and this work provides insight as to whether cooling or lubrication plays the dominant role for reaming.

Details

Industrial Lubrication and Tribology, vol. 64 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 October 2018

Safa Sabet, Moghtada Mobedi, Murat Barisik and Akira Nakayama

Fluid flow and heat transfer in a dual scale porous media is investigated to determine the interfacial convective heat transfer coefficient, numerically. The studied porous media…

Abstract

Purpose

Fluid flow and heat transfer in a dual scale porous media is investigated to determine the interfacial convective heat transfer coefficient, numerically. The studied porous media is a periodic dual scale porous media. It consists of the square rods which are permeable in an aligned arrangement. It is aimed to observe the enhancement of heat transfer through the porous media, which is important for thermal designers, by inserting intra-pores into the square rods. A special attention is given to the roles of size and number of intra-pores on the heat transfer enhancement through the dual scale porous media. The role of intra-pores on the pressure drop of air flow through porous media is also investigated by calculation and comparison of the friction coefficient.

Design/methodology/approach

To calculate the interfacial convective heat transfer coefficient, the governing equations which are continuity, momentum and energy equations are solved to determine velocity, pressure and temperature fields. As the dual scale porous structure is periodic, a representative elementary volume is generated, and the governing equations are numerically solved for the selected representative volume. By using the obtained velocity, pressure and temperature fields and using volume average definition, the volume average of aforementioned parameters is calculated and upscaled. Then, the interfacial convective heat transfer coefficient and the friction coefficient is numerically determined. The interparticle porosity is changed between 0.4 and 0.75, while the intraparticle varies between 0.2 and 0.75 to explore the effect of intra-pore on heat transfer enhancement.

Findings

The obtained Nusselt number values are compared with corresponding mono-scale porous media, and it is found that heat transfer through a porous medium can be enhanced threefold (without the increase of pressure drop) by inserting intraparticle pores in flow direction. For the porous media with low values of interparticle porosity (i.e. = 0.4), an optimum intraparticle porosity exists for which the highest heat transfer enhancement can be achieved. This value was found around 0.3 when the interparticle porosity was 0.4.

Research limitations/implications

The results of the study are interesting, especially from heat transfer enhancement point of view. However, further studies are required. For instance, studies should be performed to analyze the rate of the heat transfer enhancement for different shapes and arrangements of particles and a wider range of porosity. The other important parameter influencing heat transfer enhancement is the direction of pores. In the present study, the intraparticle pores are in flow direction; hence, the enhancement rate of heat transfer for different directions of pores must also be investigated.

Practical implications

The application of dual scale porous media is widely faced in daily life, nature and industry. The flowing of a fluid through a fiber mat, woven fiber bundles, multifilament textile fibers, oil filters and fractured porous media are some examples for the application of the heat and fluid flow through a dual scale porous media. Heat transfer enhancement.

Social implications

The enhancement of heat transfer is a significant topic that gained the attention of researchers in recent years. The importance of topic increases day-by-day because of further demands for downsizing of thermal equipment and heat recovery devices. The aim of thermal designers is to enhance heat transfer rate in thermal devices and to reduce their volume (and/or weight in some applications) by using lower mechanical power for cooling.

Originality/value

The present study might be the first study on determination of thermal transport properties of dual scale porous media yielded interesting results such as considerable enhancement of heat transfer by using proper intraparticle channels in a porous medium.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 July 2017

M. Sabour, Mohammad Ghalambaz and Ali Chamkha

The purpose of this study is to theoretically analyze the laminar free convection heat transfer of nanofluids in a square cavity. The sidewalls of the cavity are subject to…

Abstract

Purpose

The purpose of this study is to theoretically analyze the laminar free convection heat transfer of nanofluids in a square cavity. The sidewalls of the cavity are subject to temperature difference, whereas the bottom and top are insulated. Based on the available experimental results in the literature, two new non-dimensional parameters, namely, the thermal conductivity parameter (Nc) and dynamic viscosity parameter (Nv) are introduced. These parameters indicate the augmentation of the thermal conductivity and dynamic viscosity of the nanofluid by dispersing nanoparticles.

Design/methodology/approach

The governing equations are transformed into non-dimensional form using the thermo-physical properties of the base fluid. The obtained governing equations are solved numerically using the finite element method. The results are reported for the general non-dimensional form of the problem as well as case studies in the form of isotherms, streamlines and the graphs of the average Nusselt number. Using the concept of Nc and Nv, some criteria for convective enhancement of nanofluids are proposed. As practical cases, the effect of the size of nanoparticles, the shape of nanoparticles, the type of nanoparticles, the type of base fluids and working temperature on the enhancement of heat transfer are analyzed.

Findings

The results show that the increase of the magnitude of the Rayleigh number increases of the efficiency of using nanofluids. The type of nanoparticles and the type of the base fluid significantly affects the enhancement of using nanofluids. Some practical cases are found, in which utilizing nanoparticles in the base fluid results in deterioration of the heat transfer. The working temperature of the nanofluid is very crucial issue. The increase of the working temperature of the nanofluid decreases the convective heat transfer, which limits the capability of nanofluids in decreasing the size of the thermal systems.

Originality/value

In the present study, a separation line based on two non-dimensional parameters (i.e. Nc and Nv) are introduced. The separation line demonstrates a boundary between augmentation and deterioration of heat transfer by using nanoparticles. Indeed, by utilizing the separation lines, the convective enhancement of using nanofluid with a specified Nc and Nv can be simply estimated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 December 2019

G. Sowmya, B.J. Gireesha and O.D. Makinde

The purpose of this paper is to study the thermal behaviour of a fully wet porous fin of longitudinal profile. The significance of radiative and convective heat transfer has been…

Abstract

Purpose

The purpose of this paper is to study the thermal behaviour of a fully wet porous fin of longitudinal profile. The significance of radiative and convective heat transfer has been scrutinised along with the simultaneous variation of surface emissivity, heat transfer coefficient and thermal conductivity with temperature. The emissivity of the surface and the thermal conductivity are considered as linear functions of the local temperature between fin and the ambient. Darcy’s model was considered to formulate the heat transfer equation. According to this, the porous fin permits the flow to penetrate through it and solid–fluid interaction occurs.

Design/methodology/approach

Runge–Kutta–Fehlberg fourth–fifth-order method has been used to solve the reduced non-dimensionalized ordinary differential equation involving highly nonlinear terms.

Findings

The impact of pertinent parameters, such as convective parameter, radiative parameter, conductivity parameter, emissivity parameter, wet porous parameter, etc., on the temperature profiles were elaborated mathematically with the plotted graphs. The heat transfer from the fin enhances with the rise in convective parameter.

Originality/value

The wet nature of the fin enhances heat transfer and in many practical applications the parameters, such as thermal conductivity, heat transfer coefficient as well as surface emissivity, vary with temperature. Hence, the main objective of the current study is to depict the significance of simultaneous variation in surface emissivity, heat transfer coefficient and thermal conductivity with respect to temperature under natural convection and radiation condition in a totally wetted longitudinal porous fin.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of over 2000