Search results

1 – 10 of 204
Article
Publication date: 22 June 2012

Chun‐Sean Lau, M.Z. Abdullah and F. Che Ani

The purpose of this paper is to develop thermal modelling to investigate the thermal response of sample boards (at board level) during the preheating stage of the reflow process…

1232

Abstract

Purpose

The purpose of this paper is to develop thermal modelling to investigate the thermal response of sample boards (at board level) during the preheating stage of the reflow process and to validate with experimental measurements.

Design/methodology/approach

A thermal‐coupling method that adopted the Multi‐physics Code Coupling Interface (MpCCI) was utilized. A forced‐convection reflow oven was modelled using computational fluid dynamic software (FLUENT 6.3.26), whereas structural heating at the board level was conducted using finite‐element method software (ABAQUS 6.9).

Findings

The simulation showed a complex flow pattern having characteristics of a free‐jet region, stagnation‐flow region, wall jet‐region, recirculation region and vortices. A sharp maximum heat‐transfer coefficient was detected in the stagnation region of the jet, resulting in a spatial variation of local heat transfer on a thermal profile board (TPB). This coefficient affected the temperature distribution in the TPB with different specific heat capacitances and thermal conductivity of the structure. The simulation results were in good agreement with the experimental data and analytical model. The cold region and temperature uniformity (ΔT) increased with increasing complexity of the TPB. The cold region can occur in two possible locations in the TPB. Both occurrences can be related to the flow field of the reflow oven. ΔT of the TPB decreased when the conveyor speed (v) was reduced. A suitable conveyor speed (1.0 cm/s) was determined to maintain ΔT below 10°C, which prevented the thermally critical package from overheating.

Practical implications

The paper provies a methodology for designing a thermal profile for reflow soldering production.

Originality/value

The findings provide fundamental guidelines to the thermal‐coupling method at the board and package levels, very useful for accurate control of ΔT at the board and package levels, one of the major requirements in achieving a high degree of reliability for electronic assemblies.

Article
Publication date: 4 April 2016

Chun Sean Lau, C.Y. Khor, D. Soares, J.C. Teixeira and M.Z. Abdullah

The purpose of the present study was to review the thermo-mechanical challenges of reflowed lead-free solder joints in surface mount components (SMCs). The topics of the review…

1038

Abstract

Purpose

The purpose of the present study was to review the thermo-mechanical challenges of reflowed lead-free solder joints in surface mount components (SMCs). The topics of the review include challenges in modelling of the reflow soldering process, optimization and the future challenges in the reflow soldering process. Besides, the numerical approach of lead-free solder reliability is also discussed.

Design/methodology/approach

Lead-free reflow soldering is one of the most significant processes in the development of surface mount technology, especially toward the miniaturization of the advanced SMCs package. The challenges lead to more complex thermal responses when the PCB assembly passes through the reflow oven. The virtual modelling tools facilitate the modelling and simulation of the lead-free reflow process, which provide more data and clear visualization on the particular process.

Findings

With the growing trend of computer power and software capability, the multidisciplinary simulation, such as the temperature and thermal stress of lead-free SMCs, under the influenced of a specific process atmosphere can be provided. A simulation modelling technique for the thermal response and flow field prediction of a reflow process is cost-effective and has greatly helped the engineer to eliminate guesswork. Besides, simulated-based optimization methods of the reflow process have gained popularity because of them being economical and have reduced time-consumption, and these provide more information compared to the experimental hardware. The advantages and disadvantages of the simulation modelling in the reflow soldering process are also briefly discussed.

Practical implications

This literature review provides the engineers and researchers with a profound understanding of the thermo-mechanical challenges of reflowed lead-free solder joints in SMCs and the challenges of simulation modelling in the reflow process.

Originality/value

The unique challenges in solder joint reliability, and direction of future research in reflow process were identified to clarify the solutions to solve lead-free reliability issues in the electronics manufacturing industry.

Details

Soldering & Surface Mount Technology, vol. 28 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 6 April 2012

Chun‐Sean Lau, M.Z. Abdullah and F. Che Ani

The purpose of this paper is to develop a thermal coupling method of a ball grid array (BGA) assembly during a forced convection reflow soldering process.

Abstract

Purpose

The purpose of this paper is to develop a thermal coupling method of a ball grid array (BGA) assembly during a forced convection reflow soldering process.

Design/methodology/approach

The reflow oven was modeled in computational fluid dynamic (CFD) software (FLUENT 6.3.26) while the structural heating BGA package simulation was done using finite element method (FEM) software (ABAQUS 6.9). Both software applications were coupled bi‐directionally using the code coupling software MpCCI.

Findings

The convective heat transfer coefficient (h) simulated during the reflow process showed a sufficient view of the changing h in the BGA assembly of each reflow oven. The solder joints were found to experience phase change from solid to liquid during heating and liquid to solid during cooling. These phase changes were present at the melting temperature of the solder joint. The effect of the phase transition point was to cause a large range of temperature difference within the BGA assembly. This situation runs the risk of a skewing defect of components. The simulation results were compared with the experimental results and found to be in good conformity. In addition, the maximum thermal stress from simulation results was trapped in the interfaces between the solder joints and substrate, which tended to form the nucleation of initial crack.

Practical implications

The current study provides a methodology for designing a thermal profile for reflow soldering production.

Originality/value

The findings provide new guidelines for the thermal coupling method. This guideline is very useful for the accurate control of temperature distributions within components and printed circuit boards, which is one of major requirements for achieving high reliability in electronic assemblies.

Details

Soldering & Surface Mount Technology, vol. 24 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 26 August 2014

Balázs Illés

This paper aims to compare and study two-dimensional (2D) and three-dimensional (3D) computational fluid dynamics simulation results of gas flow velocity in a convection reflow

Abstract

Purpose

This paper aims to compare and study two-dimensional (2D) and three-dimensional (3D) computational fluid dynamics simulation results of gas flow velocity in a convection reflow oven and show the differences of the different modeling aspects. With the spread of finer surface-mounted devices, it is important to understand convection reflow soldering technology more deeply.

Design/methodology/approach

Convection reflow ovens are divided into zones. Every zone contains an upper and a lower nozzle-matrix. The gas flow velocity field is one of the most important parameters of the local heat transfer in the oven. It is not possible to examine the gas flow field with classical experimental methods due to the extreme circumstances in the reflow oven. Therefore, numerical simulations are necessary.

Findings

The heat transfer changes highly along the moving direction of the assembly, and it is nearly homogeneous along the traverse direction of the zones. The gas flow velocity values of the 2D model are too high due to the geometrical distortions of the 2D model. On the other hand, the calculated flow field of the 2D model is more accurate than in the 3D model due to the finer mesh.

Research limitations/implications

Investigating the effects of tall components on a printed wiring board inside the gas flow field and further analysis of the mesh size effect on the models.

Practical implications

The presented results can be useful during the design of a simulation study in a reflow oven (or in similar processes).

Originality/value

The presented results provide a completely novel approach from the aspect of 2D and 3D simulations of a convection reflow oven. The results also reveal the heat transfer differences.

Details

Soldering & Surface Mount Technology, vol. 26 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 27 February 2018

Barbara Dziurdzia, Maciej Sobolewski and Janusz Mikolajek

The aim of this paper is to evaluate using statistical methods how two soldering techniques – the convection reflow and vapour phase reflow with vacuum – influence reduction of…

Abstract

Purpose

The aim of this paper is to evaluate using statistical methods how two soldering techniques – the convection reflow and vapour phase reflow with vacuum – influence reduction of voids in lead-free solder joints under Light Emitted Diodes (LEDs) and Ball Grid Arrays (BGAs).

Design/methodology/approach

Distribution of voids in solder joints under thermal and electrical pads of LEDs and in solder balls of BGAs assembled with convection reflow and vapour phase reflow with vacuum has been investigated in terms of coverage or void contents, void diameters and number of voids. For each soldering technology, 80 LEDs and 32 solder balls in BGAs were examined. Soldering processes were carried out in the industrial or semi-industrial environment. The OM340 solder paste of Innolot type was used for LED soldering. Voidings in solder joints were inspected with a 2D X-ray transmission system. OriginLab was used for statistical analysis.

Findings

Investigations supported by statistical analysis showed that the vapour phase reflow with vacuum decreases significantly void contents and number and diameters of voids in solder joints under LED and BGA packages when compared to convection reflow.

Originality/value

Voiding distribution data were collected on the basis of 2D X-ray images for test samples manufactured during the mass production processes. Statistical analysis enabled to appraise soldering technologies used in these processes in respect of void formation.

Details

Soldering & Surface Mount Technology, vol. 30 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 26 July 2013

Chun‐Sean Lau, M.Z. Abdullah and C.Y. Khor

Reflow soldering is one of the most significant factors in determining solder joint defect rate. This study aims to introduce an innovative approach for optimizing the multiple…

Abstract

Purpose

Reflow soldering is one of the most significant factors in determining solder joint defect rate. This study aims to introduce an innovative approach for optimizing the multiple performances of the reflow soldering process.

Design/methodology/approach

This study aims to minimize the solder joint defect rate of a ball grid array (BGA) package by using the grey‐based Taguchi method. The entropy measurement method was employed together with the grey‐based Taguchi method to compute for the weights of each quality characteristic. The Taguchi L18 orthogonal array was performed, and the optimal parameter settings were determined. Various factors, such as slope, temperature, and reflow profile time, as well as two extreme noise factors, were considered. The thermal stress, peak temperature, reflow time, board‐ and package‐level temperature uniformity were selected as the quality characteristics. These quality characteristics were determined using the numerical method. The numerical method comprises the internal computational flow that models the reflow oven coupled with the structural heating and cooling models of the BGA assembly. The Multi‐physics Code Coupling Interface was used as the coupling software.

Findings

The analysis of variance results reveals that the cooling slope was the most influential factor among the multiple quality characteristics, followed by the soaking temperature and the peak temperature. Experimental confirmation test results show that the performance characteristics improved significantly during the reflow soldering process.

Practical implications

The proposed approach greatly reduces solder joint defects and enhances solutions to lead‐free reliability issues in the electronics manufacturing industry.

Originality/value

The findings provide new guidelines to the optimization method which are very useful for the accurate control of the solder joint defect rate within components and printed circuit board (PCB) which is one of the major requirements to achieve high reliability of electronic assemblies.

Article
Publication date: 1 February 2022

Yangyang Lai, Ke Pan, Yuqiao Cen, Junbo Yang, Chongyang Cai, Pengcheng Yin and Seungbae Park

This paper aims to provide the proper preset temperatures of the convection reflow oven when reflowing a printed circuit board (PCB) assembly with varied sizes of components…

269

Abstract

Purpose

This paper aims to provide the proper preset temperatures of the convection reflow oven when reflowing a printed circuit board (PCB) assembly with varied sizes of components simultaneously.

Design/methodology/approach

In this study, computational fluid dynamics modeling is used to simulate the reflow soldering process. The training data provided to the machine learning (ML) model is generated from a programmed system based on the physics model. Support vector regression and an artificial neural network are used to validate the accuracy of ML models.

Findings

Integrated physical and ML models synergistically can accurately predict reflow profiles of solder joints and alleviate the expense of repeated trials. Using this system, the reflow oven temperature settings to achieve the desired reflow profile can be obtained at substantially reduced computation cost.

Practical implications

The prediction of the reflow profile subjected to varied temperature settings of the reflow oven is beneficial to process engineers when reflowing bulky components. The study of reflowing a new PCB assembly can be started at the early stage of board design with no need for a physical profiling board prototype.

Originality/value

This study provides a smart solution to determine the optimal preset temperatures of the reflow oven, which is usually relied on experience. The hybrid physics–ML model providing accurate prediction with the significantly reduced expense is used in this application for the first time.

Article
Publication date: 1 March 1993

R.J. Klein Wassink, M.C. Seegers and M.M.F. Verguld

Several effects of the atmosphere in the soldering oven on both the soldering process itself and the soldering results are discussed. Experiments have been undertaken to compare…

Abstract

Several effects of the atmosphere in the soldering oven on both the soldering process itself and the soldering results are discussed. Experiments have been undertaken to compare the results of soldering in air and in nitrogen containing 10,100 and 1000 ppm oxygen, in which, e.g., discolouration, wettability, solderability after reflow, solder bridging and solder‐ball formation were investigated. Unmounted FR‐4 testboards with both an RMA solder paste of known high quality and a low‐residue paste were used. Mounted test boards were used to analyse the self‐alignment of components and to compare the levels of soldering defects obtained in air and in nitrogen. The test results show that a nitrogen atmosphere containing 1000 ppm of oxygen or less is sufficiently pure to realise improved soldering conditions for most types of components. For the low‐residue paste tested, 1000 ppm is too high, but 100 ppm is sufficiently low. All effects on the soldering process will depend on the amount of oxygen in the gas. To produce an oven atmosphere of nitrogen with a very low amount of O2 (e.g., <100 ppm) is rather expensive, if this oven is to work under production conditions. Will the extra cost of investment and gas consumption be worthwhile in view of a better production yield and higher product quality? The authors explain why they do not believe this to be the case.

Details

Soldering & Surface Mount Technology, vol. 5 no. 3
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 15 January 2020

Daniel Straubinger, István Bozsóki, David Bušek, Balázs Illés and Attila Géczy

In this paper, analytical modelling of heat distribution along the thickness of different printed circuit board (PCB) substrates is presented according to the 1 D heat transient…

Abstract

Purpose

In this paper, analytical modelling of heat distribution along the thickness of different printed circuit board (PCB) substrates is presented according to the 1 D heat transient conduction problem. This paper aims to reveal differences between the substrates and the geometry configurations and elaborate on further application of explicit modelling.

Design/methodology/approach

Different substrates were considered: classic FR4 and polyimide, ceramics (BeO, Al2O3) and novel biodegradables (polylactic-acid [PLA] and cellulose acetate [CA]). The board thicknesses were given in 0.25 mm steps. Results are calculated for heat transfer coefficients of convection and vapour phase (condensation) soldering. Even heat transfer is assumed on both PCB sides.

Findings

It was found that temperature distributions along PCB thicknesses are mostly negligible from solder joint formation aspects, and most of the materials can be used in explicit reflow profile modelling. However PLA shows significant temperature differences, pointing to possible modelling imprecisions. It was also shown, that while the difference between midplane and surface temperatures mainly depend on thermal diffusivity, the time to reach solder alloy melting point on the surface depends on volumetric heat capacity.

Originality/value

Results validate the applicability of explicit heat transfer modelling of PCBs during reflow for different heat transfer methods. The results can be incorporated into more complex simulations and profile predicting algorithms for industrial ovens controlled in the wake of Industry 4.0 directives for better temperature control and ultimately higher soldering quality.

Details

Circuit World, vol. 46 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 1 December 2005

Sylvia Ehrler

Aims to explain the main requirements for printed circuit boards (PCBs) and to determine the survival rate of boards in lead‐free assembly.

Abstract

Purpose

Aims to explain the main requirements for printed circuit boards (PCBs) and to determine the survival rate of boards in lead‐free assembly.

Design/methodology/approach

The first two main requirements are the survival of 5‐6 cycles lead free reflow with peak temperatures of up to 260°C and an identical or even better board reliability of such boards compared to todays eutectic soldered ones. In a first series of tests the influence of base materials, reflow temperature gradient and peak temperature on PCB survival rate are investigated. Thermo‐mechanical data of different epoxy‐based materials are compared to survival rate investigations using repeated reflow tests. The impact of PCB manufacturing and design on the lead free performance is discussed. A second series of investigations is air‐to‐air life cycle tests of daisy chain boards out of different epoxy‐based materials with varying preconditioning were done.

Findings

The tests showed that dicy cured epoxy base materials are not able to withstand the thermal stress of the mentioned soldering steps. Board design and the heating gradient in reflow also influence the assembly performance. Thermal cycling tests (air‐to‐air), showed clearly the effect of reflow temperature and number of reflow cycles on through‐hole reliability. There was no significant impact of z‐axis‐expansion on the through‐hole failure rate in air‐to‐air cycling.

Originality/value

Provides further information on the lead‐free assembly of PCBs.

Details

Circuit World, vol. 31 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

1 – 10 of 204