Search results

1 – 10 of over 71000
Article
Publication date: 1 July 2014

Diego Esteves Campeão, Sebastian Miguel Giusti and Andre Antonio Novotny

– The purpose of this paper is to compare between two methods of volume control in the context of topological derivative-based structural optimization of Kirchhoff plates.

Abstract

Purpose

The purpose of this paper is to compare between two methods of volume control in the context of topological derivative-based structural optimization of Kirchhoff plates.

Design/methodology/approach

The compliance topology optimization of Kirchhoff plates subjected to volume constraint is considered. In order to impose the volume constraint, two methods are presented. The first one is done by means of a linear penalization method. In this case, the penalty parameter is the coefficient of a linear term used to control the amount of material to be removed. The second approach is based on the Augmented Lagrangian method which has both, linear and quadratic terms. The coefficient of the quadratic part controls the Lagrange multiplier update of the linear part. The associated topological sensitivity is used to devise a structural design algorithm based on the topological derivative and a level-set domain representation method. Finally, some numerical experiments are presented allowing for a comparative analysis between the two methods of volume control from a qualitative point of view.

Findings

The linear penalization method does not provide direct control over the required volume fraction. In contrast, through the Augmented Lagrangian method it is possible to specify the final amount of material in the optimized structure.

Originality/value

A strictly simple topology design algorithm is devised and used in the context of compliance structural optimization of Kirchhoff plates under volume constraint. The proposed computational framework is quite general and can be applied in different engineering problems.

Details

Engineering Computations, vol. 31 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 May 1995

Christopher K. Hess and Ioannis N. Miaoulis

During the thermal processing of thin films in which low intensity lineheat sources are used, extended processing times are often required to reachsteady state (˜15 sec). In…

Abstract

During the thermal processing of thin films in which low intensity line heat sources are used, extended processing times are often required to reach steady state (˜15 sec). In addition, the melting of the film may occur some time after processing has begun, and therefore there is no initial melting condition within the film. In such cases, computer simulations may become very time consuming, and the development of an efficient computational method which incorporates the initial formation of the melt during processing is necessary. A general technique was developed to accurately model two‐dimensional heat conduction in a multilayer film structure with one‐dimensional phase change in one of the thin films. These conditions frequently exist in thin film thermal processing when the thermal gradient through the thickness of the melting film can be considered negligible. The method involves an implicit formulation of the modified enthalpy method. The solid/liquid interface energy‐balance equation is taken into account which allows the exact location of the interface to be tracked within a control volume. A comparison is made between the explicit and implicit modified methods to test efficiency and accuracy. The implicit method is then applied to the zone‐melting recrystallization of a silicon thin film in a multilayer structure.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 5 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 December 2002

Y. Stry, M. Hainke and Th. Jung

A controlvolume based method for the numerical calculation of axisymmetric incompressible fluid flow and heat transfer is presented. The proposed method extends the staggered…

Abstract

A controlvolume based method for the numerical calculation of axisymmetric incompressible fluid flow and heat transfer is presented. The proposed method extends the staggered grid approach to unstructured triangular meshes. The velocities are stored at the vertices and the edges of a triangle, pressure and temperature are stored at the vertices. Accordingly, velocities are interpolated in a quadratic way, pressure and temperature linearly. The accuracy of the proposed method is examined for a number of different testproblems. Compared to a linear interpolation scheme implemented in the same code, more accurate solutions and smaller computation times are obtained for the proposed quadratic scheme. The method was designed for and is about to be applied to the numerical simulation of crystal growth.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 12 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 August 2019

Mohammad Haji Mohammadi and Joshua R. Brinkerhoff

Turbomachinery, including pumps, are mainly designed to extract/produce energy from/to the flow. A major challenge in the numerical simulation of turbomachinery is the inlet flow…

Abstract

Purpose

Turbomachinery, including pumps, are mainly designed to extract/produce energy from/to the flow. A major challenge in the numerical simulation of turbomachinery is the inlet flow rate, which is routinely treated as a known boundary condition for simulation purposes but is properly a dependent output of the solution. As a consequence, the results from numerical simulations may be erroneous due to the incorrect specification of the discharge flow rate. Moreover, the transient behavior of the pumps in their initial states of startup and final states of shutoff phases has not been studied numerically. This paper aims to develop a coupled procedure for calculating the transient inlet flow rate as a part of the solution via application of the control volume method for linear momentum. Large eddy simulation of a four-blade axial hydraulic pump is carried out to calculate the forces at every time step. The sharp interface immersed boundary method is used to resolve the flow around the complex geometry of the propeller, stator and the pipe casing. The effect of the spurious pressure fluctuations, inherent in the sharp interface immersed boundary method, is damped by local time-averaging of the forces. The developed code is validated by comparing the steady-state volumetric flow rate with the experimental data provided by the pump manufacturer. The instantaneous and time-averaged flow fields are also studied to reveal the flow pattern and turbulence characteristics in the pump flow field.

Design/methodology/approach

The authors use control volume analysis for linear momentum to simulate the discharge rate as part of the solution in a large eddy simulation of an axial hydraulic pump. The linear momentum balance equation is used to update the inlet flow rate. The sharp interface immersed boundary method with dynamic Smagorinsky sub-grid stress model and a proper wall model is used.

Findings

The steady-state volumetric flow rate has been computed and validated by comparing to the flow rate specified by the manufacturer at the simulation conditions, which shows a promising result. The instantaneous and time averaged flow fields are also studied to reveal the flow pattern and turbulence characteristics in the pump flow field.

Originality/value

An approach is proposed for computing the volumetric flow rate as a coupled part of the flow solution, enabling the simulation of turbomachinery at all phases, including the startup/shutdown phase. To the best of the authors’ knowledge, this is the first large eddy simulation of a hydraulic pump to calculate the transient inlet flow rate as a part of the solution rather than specifying it as a fixed boundary condition. The method serves as a numerical framework for simulating problems incorporating complex shapes with moving/stationary parts at all regimes including the transient start-up and shut-down phases.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 February 2003

Jayantha Pasdunkorale A. and Ian W. Turner

An existing two‐dimensional finite volume technique is modified by introducing a correction term to increase the accuracy of the method to second order. It is well known that the…

Abstract

An existing two‐dimensional finite volume technique is modified by introducing a correction term to increase the accuracy of the method to second order. It is well known that the accuracy of the finite volume method strongly depends on the order of the approximation of the flux term at the control volume (CV) faces. For highly orthotropic and anisotropic media, first order approximations produce inaccurate simulation results, which motivates the need for better estimates of the flux expression. In this article, a new approach to approximate the flux term at the CV face is presented. The discretisation involves a decomposition of the flux and an improved least squares approximation technique to calculate the derivatives of the dependent function on the CV faces for estimating both the cross diffusion term and a correction for the primary flux term. The advantage of this method is that any arbitrary unstructured mesh can be used to implement the technique without considering the shapes of the mesh elements. It was found that the numerical results well matched the available exact solution for a representative transport equation in highly orthotropic media and the benchmark solutions obtained on a fine mesh for anisotropic media. Previously proposed CV techniques are compared with the new method to highlight its accuracy for different unstructured meshes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 13 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 December 2019

Xiumin Zhang, Mingfu Yin and Huilai Sun

This paper aims to study the dynamic characteristics of the straight-through labyrinth seals, which is applied on an oil sealing belt of hydrostatic support system (HSS) oil…

Abstract

Purpose

This paper aims to study the dynamic characteristics of the straight-through labyrinth seals, which is applied on an oil sealing belt of hydrostatic support system (HSS) oil pocket, the establishment and solution process of seal governing equation is deduced.

Design/methodology/approach

The three-control-volume model theory is an efficient approach that is applied well. This paper starts with three relative governing equations for the flow characteristics of straight-through labyrinth seals in the plane direction. Referring to the establishment process of governing equations for circumferentially-grooved liquid seals, the governing equation based on space rectangular coordinate system is established, which are transformed into dimensionless equations through a nondimensionalized process and solved by a perturbation method. It contains a zeroth-order equation, through which a steady fluid distribution is determined, and a first-order equation, through which the seal’s dynamic coefficients can be acquired.

Findings

The governing equation for plane-grooved straight-through labyrinth seals can be established and solved by the three-control-volume theory.

Practical implications

This study have important guiding significance for further theoretical research and structural design of the straight-through labyrinth seals on the oil sealing belt of HSS oil pocket.

Originality/value

In this paper, a straight-through labyrinth seal is installed in an oil sealing belt. The three-control-volume governing equations is established in space rectangular coordinate system, and the shear force of the fluid Y-direction is different from the previous model.

Details

Industrial Lubrication and Tribology, vol. 72 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 June 2003

H. Abbassi, A. Boughamoura and S. Ben Nasrallah

In this paper, we present a comparison of linear and exponential interpolation functions for control volume finite element method. The exponential interpolation function is…

Abstract

In this paper, we present a comparison of linear and exponential interpolation functions for control volume finite element method. The exponential interpolation function is expressed in the elemental local coordinate system whereas the classic linear interpolation function is expressed in the global coordinate system. The comparison is achieved in the case of the Green‐Taylor vortex, a flow from which we know the analytical solution. Firstly, the two functions are applied to a triangular element of the domain to compare the results given by each interpolation function to the exact value. Secondly, these two functions are compared when used to solve the discretized equations over the entire domain.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 13 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 1955

WHEN one considers the fundamental weakness of time study—the personal evaluation of performance—it raises the question whether the predetermined motion time system is going to…

Abstract

WHEN one considers the fundamental weakness of time study—the personal evaluation of performance—it raises the question whether the predetermined motion time system is going to absolve the time study engineer from future disputes as to standard times. And if it is, then at whose door, may we ask, are these disputes to be laid?

Details

Work Study, vol. 4 no. 8
Type: Research Article
ISSN: 0043-8022

Article
Publication date: 2 January 2018

Magdalena Jaremkiewicz

The purpose of this paper is to propose a method of determining the transient temperature of the inner surface of thick-walled elements. The method can be used to determine…

Abstract

Purpose

The purpose of this paper is to propose a method of determining the transient temperature of the inner surface of thick-walled elements. The method can be used to determine thermal stresses in pressure elements.

Design/methodology/approach

An inverse marching method is proposed to determine the transient temperature of the thick-walled element inner surface with high accuracy.

Findings

Initially, the inverse method was validated computationally. The comparison between the temperatures obtained from the solution for the direct heat conduction problem and the results obtained by means of the proposed inverse method is very satisfactory. Subsequently, the presented method was validated using experimental data. The results obtained from the inverse calculations also gave good results.

Originality/value

The advantage of the method is the possibility of determining the heat transfer coefficient at a point on the exposed surface based on the local temperature distribution measured on the insulated outer surface. The heat transfer coefficient determined experimentally can be used to calculate thermal stresses in elements with a complex shape. The proposed method can be used in online computer systems to monitor temperature and thermal stresses in thick-walled pressure components because the computing time is very short.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 April 1995

J.P. Du Plessis and L.I. Roos

Regularities imposed by an external wall on the random distribution ofparticles in a packed bed lead to anisotropic wall effects of the bed. Theresulting deviations of near—wall…

Abstract

Regularities imposed by an external wall on the random distribution of particles in a packed bed lead to anisotropic wall effects of the bed. The resulting deviations of near—wall porosity from the average bed—porosity markedly affect the average velocity profile, not only near the wall but also some distance into the bed itself. The effect of wall channelling due to such variations in porosity near external boundaries is predicted by means of two different numerical solution methods for a unified model for granular porous media. The results are shown to compare favourably to experimental and numerical results reported in the literature.

Details

Engineering Computations, vol. 12 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 71000