Search results

1 – 10 of 272
Article
Publication date: 2 October 2018

Saleh Akbaritabar, Reza Esmaelzadeh and Reza Zardashti

This paper aims to describe a novel type of attitude control system (ACS) in different configurations. This servomechanism is compared with control moment gyro (CMG) in…

Abstract

Purpose

This paper aims to describe a novel type of attitude control system (ACS) in different configurations. This servomechanism is compared with control moment gyro (CMG) in significant parameters of performance for ACS of rigid satellite.

Design/methodology/approach

This new actuator is the fluid containing one or more rings and fluid flow is supplied by pump. The required torque control is obtained by managing fluid angular velocity. The cube-shaped satellite with three rings of fluid in the principle axes is considered for modeling. The satellite is considered rigid and nonlinear dynamics equation is used for it. In addition, the failure of the pyramid-shaped satellite with an additional ring fluid is discussed.

Findings

The controller model for four fluid rings has more complexity than for three fluid rings. The simulation results illustrated that four fluid rings need less energy for stabilization than three fluid rings. The performance of this type of actuator is compared with CMG. At last, it is demonstrated that performance parameters are improved with fluid ring actuator.

Research limitations/implications

Fluid ring actuator can be affected by environmental pressure and temperature. Therefore, freezing and boiling temperature of the fluid should be considered in system designation.

Practical implications

Fluid ring servomechanism can be used as ACS in rigid satellites. This actuator is compared by CMG, the prevalent actuator. It has less displacement attitude maneuver.

Originality/value

The results provide the feasibility and advantages of using fluid rings as satellite ACS. The quaternion error controller is used for this model to enhance its performance.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 6 March 2017

Javad Tayebi, Amir Ali Nikkhah and Jafar Roshanian

The purpose of the paper is to design a new attitude stabilization system for a microsatellite based on single gimbal control moment gyro (SGCMG) in which the gimbal rates are…

Abstract

Purpose

The purpose of the paper is to design a new attitude stabilization system for a microsatellite based on single gimbal control moment gyro (SGCMG) in which the gimbal rates are selected as controller parameters.

Design/methodology/approach

In the stability mode, linear quadratic regulator (LQR) and linear quadratic Gaussian (LQG) control strategies are presented with the gimbal rates as a controller parameters. Instead of developing a control torque to solve the attitude problem, the attitude controller is developed in terms of the control moment gyroscope gimbal angular velocities. Attitude control torques are generated by means of a four SGCMG pyramid cluster.

Findings

Numerical simulation results are provided to show the efficiency of the proposed controllers. Simulation results show that this method could stabilize satellite from initial condition with large angles and with more accuracy in comparison with feedback quaternion and proportional-integral-derivative controllers. These results show the effect of filtering the noisy signal in the LQG controller. LQG in comparison to LQR is more realistic.

Practical implications

The LQR method is more appropriate for the systems that have project models reasonably exact and ideal sensors/actuators. LQG is more realistic, and it can be used when not all of the states are available or when the system presents noises. LQR/LQG controller can be used in the stabilization mode of satellite attitude control.

Originality/value

The originality of this paper is designing a new attitude stabilization system for an agile microsatellite using LQR and LQG controllers.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 29 June 2021

Javad Tayebi, Chao Han and Yuanjin Yu

The purpose of this paper is agile attitude control design with the novel three-dimensional (3D) magnetically suspended wheel (MSW) that is the preferred type for agile…

82

Abstract

Purpose

The purpose of this paper is agile attitude control design with the novel three-dimensional (3D) magnetically suspended wheel (MSW) that is the preferred type for agile maneuvering compared to conventional control moment gyro due to frictionless, low vibration and long lifetime. This system does not require a separate steering law for pyramid arrangement to derive tilt angles. It is also conducting an agile maneuver with high accuracy despite the high-frequency disturbances.

Design/methodology/approach

In this paper, a disturbance observer-based attitude stabilization method is proposed for an agile satellite with a pyramid cluster of the novel 3D magnetically suspended wheel actuator. This strategy includes a disturbance observer and a linear quadratic regulator controller. The rotor shaft deflection of MSW is actively controlled to reduce vibration and producing gyro torque. The deflection angle of the pyramid cluster MSWs considered as control parameters. The closed-loop stability is proved by using the Lyapunov strategy. The efficiency and performance of the offered method verified by numerical simulation via MATLAB/SIMULINK software.

Findings

According to simulation results, the disturbance observer-based control controller stabilized the system with high accuracy and optimal tilt angles without any extra steering law equation. Hence, the system speed is increased, and the system error is minimized without separate steering law.

Practical implications

The magnetically suspended wheel is a new kind of inertia actuator for attitude control that has several benefits such as frictionless, high-speed rotor, clean environment and low vibration compared to the traditional wheel. It has complex nonlinear dynamics that cause have complicated controller design. The proposed strategy stabilizes the system and conducting an agile maneuver with high precision despite the high-frequency disturbances. It is applicable for some missions requiring high accuracies, like Earth observation and the solar observation mission that require a very accurate pointing control and a long lifetime.

Originality/value

This paper is the initial paper to design a pyramid array for magnetically suspended wheels. Compared to other research, this method doesn’t need a separate steering law of the MSWs cluster and presented optimal tilt angles with less computational. Also, it designs a disturbance observer-based controller for this system that proposed high accuracy and agile stabilization.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 15 June 2021

Mohd Badrul Salleh, Nurulasikin Mohd Suhadis and Renuganth Varatharajoo

This paper aims to investigate the attitude control pointing improvement for a small satellite with control moment gyroscopes (CMGs) using the active force control (AFC) method.

Abstract

Purpose

This paper aims to investigate the attitude control pointing improvement for a small satellite with control moment gyroscopes (CMGs) using the active force control (AFC) method.

Design/methodology/approach

The AFC method is developed with its governing equations and integrated into the conventional proportional-derivative (PD) controller of a closed-loop satellite attitude control system. Two numerical simulations of an identical attitude control mission namely the PD controller and the PD+AFC controller were carried out using the MATLAB®-SimulinkTM software and their attitude control performances were demonstrated accordingly.

Findings

Having the PD+AFC controller, the attitude maneuver can be completed within the desired slew rate, which is about 2.14 degree/s and the attitude pointing accuracies for the roll, pitch and yaw angles have improved significantly by more than 85% in comparison with the PD controller alone. Moreover, the implementation of the AFC into the conventional PD controller does not cause significant difference on the physical structure of the four single gimbal CMGs (4-SGCMGs).

Practical implications

To achieve a precise attitude pointing mission, the AFC method can be applied directly to the existing conventional PD attitude control system of a CMG-based satellite. In this case, the AFC is indeed the backbone for the satellite attitude performance improvement.

Originality/value

The present study demonstrates that the attitude pointing of a small satellite with CMGs is improved through the implementation of the AFC scheme into the PD controller.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 6 May 2014

Muhammad Juhairi Aziz Safar, Keigo Watanabe, Shoichi Maeyama and Isaku Nagai

The purpose of this paper is to analyze the stability behavior of the omnidirectional mobile robot with active dual-wheel caster (ADWC) assemblies and provide a stable trajectory…

Abstract

Purpose

The purpose of this paper is to analyze the stability behavior of the omnidirectional mobile robot with active dual-wheel caster (ADWC) assemblies and provide a stable trajectory without any tip-over incident. The omnidirectional mobile robot to be developed is for transporting cuboid-shaped objects.

Design/methodology/approach

The omnidirectional transport mobile robot is designed using an ADWC assemblies structure, the tip-over occurrence is estimated based on the support forces of an active footprint, the tip-over direction is predicted, the tip-over stability is enhanced to prevent the tip-over occurrence and a fast traveling motion is provided.

Findings

The omnidirectional mobile robot tends to tip-over more on the sides with small ranges of tip-over angle. The proposed method for estimating the tip-over occurrence and enhancing the stability using the gyroscopic torque device was feasible as the tip-over prevention system of the omnidirectional mobile robot with ADWC assemblies.

Originality/value

The research addresses the study of the tip-over stability for the omnidirectional mobile robot that possesses an active footprint. It also addresses the prediction of the tip-over occurrence using the derived dynamical model together with force-angle stability measure and the tip-over stability enhancement method using a single-gimbal control moment gyro device.

Details

International Journal of Intelligent Unmanned Systems, vol. 2 no. 2
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 8 June 2021

Yiqi Xu

This paper aims to address the spacecraft attitude control problem using hybrid actuators in the presence of actuator saturation, uncertainties and faults, inertia uncertainties…

Abstract

Purpose

This paper aims to address the spacecraft attitude control problem using hybrid actuators in the presence of actuator saturation, uncertainties and faults, inertia uncertainties and external disturbances.

Design/methodology/approach

A hybrid actuator configuration is used where thrusters are engaged for rapid attitude maneuvers, while reaction wheels (RWs) are used for fine pointing.

Findings

The key advantages are two-fold: a finite-time high-level controller is designed to produce the three-axis virtual control torques; an online robust control allocation (RobCA) scheme is proposed to redistribute virtual control signals to the actuators with taking into account the actuator saturation, uncertainties and faults; and the RobCA scheme allows a smooth switch between thrusters and RWs, which handles the inaccuracy problem of thrusters and saturation problem of RWs.

Practical implications

An online RobCA algorithm is designed that maps the total control demands onto individual actuator settings and allows a smooth switch between thrusters and RWs. Simulation results show the effectiveness of the proposed control strategy.

Originality/value

This work may be used on modern space missions, which impose higher requirements on smooth switching of spacecraft thrusters and RWs.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 16 June 2022

Yaquan Han, Jihe Wang, Haifeng Huang, Jun Sun and Yue Sun

This study aims to establish the laser links between satellites among large-scale distributed satellite systems; a combined attitude control strategy containing two stages is…

Abstract

Purpose

This study aims to establish the laser links between satellites among large-scale distributed satellite systems; a combined attitude control strategy containing two stages is proposed in this paper.

Design/methodology/approach

These two stages are: one is the attitude initial pointing control to change the attitude of satellite pointing to the other satellite based on the position information of each satellite; the other one is the high precision attitude tracking control to scan the uncertainty cone because the initial pointing control accuracy is not enough to establish the laser link. At the initial pointing control stage, a method to determine the target attitude of each satellite is presented based on the position information of each satellite, and the fuzzy adaptive control algorithm is used to control the satellites to its calculated attitude. Then, at the high precision attitude tracking control stage, a strategy for laser link acquisition and scanning the uncertainty cone by the lasers of the spacecraft is proposed, and an angular velocity tracking scanning controller is designed while the convergence of the attitude tracking error is ensured through Lyapunov–Krasovskii theory.

Findings

Simulations are conducted to verify the effectiveness of the proposed control algorithm, and the laser link for a large-scale distributed satellite system with super long distance is achieved through a combined attitude control strategy.

Research limitations/implications

A combined attitude control strategy is valid for a large-scale distributed satellite system with super long distance.

Practical implications

A combined attitude control strategy can be used to achieve laser link acquisition for a large-scale distributed satellite system like space gravitational wave detection.

Originality/value

A combined attitude control strategy can provide a way to solve the typical problem that pointing control accuracy is not enough to establish the laser link for a large-scale distributed satellite system.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 8 July 2022

Cunfu Wang and Bifa Chen

This paper aims to present a multi-axis actuating approach to attenuate the bending and torsional vibration of the solar array through the reaction wheel (RW) actuators.

Abstract

Purpose

This paper aims to present a multi-axis actuating approach to attenuate the bending and torsional vibration of the solar array through the reaction wheel (RW) actuators.

Design/methodology/approach

The motion equation of the solar array with the RW actuators is derived in modal coordinates for controller design. The reaction torques, induced by the speed change of the RW actuators, are controlled for vibration attenuation through the constraints on the actuators’ rotating speed. The proposed control approach is firstly verified with numerical simulation on the finite element model of a full-scale solar array. Experimental study of a simplified elastic plate model is subsequently performed for feasibility and validity investigation.

Findings

Both the numerical and experimental studies demonstrated the success of adopting RW as the actuator. Results from numerical simulation reveal that the vibration response peak can be reduced by 80% with 2% of mass increase by using the RW actuators.

Practical implications

It is demonstrated that the multi-axis actuating method using RW actuators has a great potential in vibration attenuation of the multi-panel deployable solar array.

Originality/value

An approach to reduce bending and torsional vibration of solar array based on RW actuators is investigated. Theoretical analysis, numerical simulation and experimental study are conducted to demonstrate the validity of the proposed vibration attenuation approach and its potential application in the spacecraft design.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 14 October 2020

Yew-Chung Chak, Renuganth Varatharajoo and Nima Assadian

The paper aims to address the combined attitude control and Sun tracking problem in a flexible spacecraft in the presence of external and internal disturbances. The attitude…

Abstract

Purpose

The paper aims to address the combined attitude control and Sun tracking problem in a flexible spacecraft in the presence of external and internal disturbances. The attitude stabilization of a flexible satellite is generally a challenging control problem, because of the facts that satellite kinematic and dynamic equations are inherently nonlinear, the rigid–flexible coupling dynamical effect, as well as the uncertainty that arises from the effect of actuator anomalies.

Design/methodology/approach

To deal with these issues in the combined attitude and Sun tracking system, a novel control scheme is proposed based on the adaptive fuzzy Jacobian approach. The augmented spacecraft model is then analyzed and the Lyapunov-based backstepping method is applied to develop a nonlinear three-axis attitude pointing control law and the adaptation law.

Findings

Numerical results show the effectiveness of the proposed adaptive control scheme in simultaneously tracking the desired attitude and the Sun.

Practical implications

Reaction wheels are commonly used in many spacecraft systems for the three-axis attitude control by delivering precise torques. If a reaction wheel suffers from an irreversible mechanical breakdown, then it is likely going to interrupt the mission, or even leading to a catastrophic loss. The pitch-axis mounted solar array drive assemblies (SADAs) can be exploited to anticipate such situation to generate a differential torque. As the solar panels are rotated by the SADAs to be orientated relative to the Sun, the pitch-axis wheel control torque demand can be compensated by the differential torque.

Originality/value

The proposed Jacobian control scheme is inspired by the knowledge of Jacobian matrix in the trajectory tracking of robotic manipulators.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Content available
Article
Publication date: 1 October 1998

380

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 70 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

1 – 10 of 272