Search results

1 – 10 of over 40000
Article
Publication date: 14 March 2016

De-Liang Liu, Shu-hua Cao, Shi-feng Zhang and Jiu-jun Xu

The purpose of this study is to solve this problem. Different lubrication states play a huge role in friction, wear and service life of parts. To ensure the reliability and power…

Abstract

Purpose

The purpose of this study is to solve this problem. Different lubrication states play a huge role in friction, wear and service life of parts. To ensure the reliability and power of the internal combustion engine, it is necessary to ensure that the friction pair has been in the best lubrication state. One of the key problems of lubrication state and transformation characteristics is to achieve real-time measurement of lubrication state.

Design/methodology/approach

Previous studies show that the contact resistance method is very effective in the qualitative analysis of lubrication state test. The circuit is simple and does not require expensive test equipment. But this method could not accurately reflect the film thickness ratio. Through a combination of experimental and theoretical analysis methods, the limitation of the contact resistance method could be overcome.

Findings

The relationship between the point contact film-thickness ratio and contact resistance was established, then the film-thickness ratio could be obtained through the contact resistance, thus providing the basis for determining the point contact lubrication state.

Research limitations/implications

According to existing research, the lubrication state of the friction pair mainly was determined through two methods, the friction coefficient and film-thickness ratio. But there are limitations on either using Stribeck curves or optical interference methods. The method used in this paper not only provides a verified way of design theory and model, but is also beneficial to the formation of a new design theory.

Originality/value

A new real-time measurement method of lubrication state based on contact resistance is established and its practicability and veracity are verified by series experiments.

Details

Industrial Lubrication and Tribology, vol. 68 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 21 November 2018

Yong Yang, Wenguang Li, Jiaxu Wang and Qinghua Zhou

The purpose of this study is to investigate the tribological performance of helical gear pairs with consideration of the properties of non-Newtonian lubricant and the real…

Abstract

Purpose

The purpose of this study is to investigate the tribological performance of helical gear pairs with consideration of the properties of non-Newtonian lubricant and the real three-dimensional (3D) topography of tooth flanks.

Design/methodology/approach

Based on the mixed elastohydrodynamic lubrication (EHL) theory for infinite line contact, this paper proposes a complete model for involute helical gear pairs considering the real 3D topography of tooth flanks and the properties of non-Newtonian lubricant. Film thickness, contact load and contact area ratios at the mid-point of contact line are studied for each angular displacement of pinion. Both the total friction coefficient and surface flash temperature are calculated after obtaining the values of pressure and subsurface stress. Then, the influences of input parameters including rotational speed and power are investigated.

Findings

During the meshing process, contact load ratio and area ratio of the two rough surface cases first increase and then decrease; the maximum flash temperature rise (MFTR) on the gear is lower than that on the pinion first, but later the situation converses. For cylindrical gears, on the plane of action, there is a point or a line where the instantaneous friction reduces to a minimum value in a sudden, as the sliding–rolling ratio becomes zero. When rotational speed increases, film thickness becomes larger, and meanwhile, contact load ratio, coefficient of friction and MFTR gradually reduce.

Originality/value

A comprehensive analysis is conducted and a computer program is developed for meshing geometry, kinematics, tooth contact, mixed EHL characteristics, friction, FTR and subsurface stress of involute helical gear pairs. Besides, a numerical simulation model is developed, which can be used to analyze mixed lubrication with 3D machined roughness under a wide range of operating conditions.

Details

Industrial Lubrication and Tribology, vol. 71 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 August 2006

Budong Yang, Yue Jiao and Shuting Lei

To use distinct element simulation (PFC2D) to investigate the relationships between microparameters and macroproperties of the specimens that are modeled by bonded particles. To…

1834

Abstract

Purpose

To use distinct element simulation (PFC2D) to investigate the relationships between microparameters and macroproperties of the specimens that are modeled by bonded particles. To determine quantitative relationships between particle level parameters and mechanical properties of the specimens.

Design/methodology/approach

A combined theoretical and numerical approach is used to achieve the objectives. First, theoretical formulations are proposed for the relationships between microparameters and macroproperties. Then numerical simulations are conducted to quantify the relationships.

Findings

The Young's modulus is mainly determined by particle contact modulus and affected by particle stiffness ratio and slightly affected by particle size. The Poisson's ratio is mainly determined by particle stiffness ratio and slightly affected by particle size. The compressive strength can be scaled by either the bond shear strength or the bond normal strength depending on the ratio of the two quantities.

Research limitations/implications

The quantitative relationships between microparameters and macroproperties for parallel‐bonded PFC2D specimens are empirical in nature. Some modifications may be needed to model a specific material. The effects of the particle distribution and bond strength distribution of a PFC2D specimen are very important aspects that deserve further investigation.

Practical implications

The results will provide guidance for people who use distinct element method, especially the PFC2D, to model brittle materials such as rocks and ceramics.

Originality/value

This paper offers some new quantitative relationships between microparameters and macroproperties of a synthetic specimen created using bonded particle model.

Details

Engineering Computations, vol. 23 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 2022

Xiaopeng Wang, Kun Peng, Meiyun Zhao, Hongliang Tian and Hongling Qin

The purpose of this paper is to propose a wheel/rail mixed lubrication model to study the water lubrication behavior of wheel/rail contact interface.

Abstract

Purpose

The purpose of this paper is to propose a wheel/rail mixed lubrication model to study the water lubrication behavior of wheel/rail contact interface.

Design/methodology/approach

The numerical simulation method is applied in this paper. A deterministic mixed lubrication model considering surface roughness and transient state is established. The quasi-system numerical and finite difference method are used for numerical solution. The model is verified by comparing with the experimental data in the literature under the same conditions.

Findings

Under wet conditions, the change of train speed will change the lubrication state of the wheel/rail contact interface. With an increasing speed, the average film thickness and the film thickness ratio increase, while the adhesion coefficient, the contact load ratio and the contact area ratio decrease. When the creep ratio increases from 0% to 0.5%, the wheel/rail adhesion coefficient and subsurface stress increase sharply. With the increase of axle load, the average film thickness decreases and the adhesion coefficient increases.

Practical implications

This paper aims to improve the mixed lubrication theory by analyzing the characteristics of wheel/rail friction and lubrication, so as to provide some guidance and theory for train driving behavior.

Originality/value

Using the deterministic model, the lubrication state of the wheel/rail contact interface affected by various external factors and the adhesion behavior of wheel/rail progressive process from boundary lubrication to mixed lubrication are studied.

Details

Industrial Lubrication and Tribology, vol. 74 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 January 2020

Yali Zhang, Xiaogang Zhang and Zhongmin Jin

This study aims to investigate the contact behavior of nominal curved surfaces with random roughness.

Abstract

Purpose

This study aims to investigate the contact behavior of nominal curved surfaces with random roughness.

Design/methodology/approach

A deterministic model was applied to investigate the contact behavior. Numerical calculations were conducted on Gaussian and fractal profiles under a range of loading conditions. The deformation behavior is characterized in terms of three regimes including the elastic, elastoplastic and plastic regimes.

Findings

A linear relationship was observed between the real contact areas and normal loads, which is mainly governed by the plastic deformation. Surface roughness changes contact behavior by influence the transition of deformation regimes. Rougher surfaces generally demonstrate higher saturated plastic ratios.

Originality/value

The contact behavior of nominally curved surfaces with random roughness is understood in terms of the evolution of real contact areas and plastic ratios.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2019-0190.

Details

Industrial Lubrication and Tribology, vol. 72 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 5 October 2015

Ming Xia

The purpose of this paper is to present an upscale theory of the thermal-mechanical coupling particle simulation for non-isothermal problems in two-dimensional quasi-static…

Abstract

Purpose

The purpose of this paper is to present an upscale theory of the thermal-mechanical coupling particle simulation for non-isothermal problems in two-dimensional quasi-static system, under which a small length-scale particle model can exactly reproduce the same mechanical and thermal results with that of a large length-scale one.

Design/methodology/approach

The objective is achieved by extending the upscale theory of particle simulation for two-dimensional quasi-static problems from an isothermal system to a non-isothermal one.

Findings

Five similarity criteria, namely geometric, material (mechanical and thermal) properties, gravity acceleration, (mechanical and thermal) time steps, thermal initial and boundary conditions (Dirichlet/Neumann boundary conditions), under which a small-length-scale particle model can exactly reproduce both the mechanical and thermal behavior with that of a large length-scale model for non-isothermal problems in a two-dimensional quasi-static system are proposed. Furthermore, to test the proposed upscale theory, two typical examples subjected to different thermal boundary conditions are simulated using two particle models of different length scale.

Originality/value

The paper provides some important theoretical guidances to modeling thermal-mechanical coupled problems at both the engineering length scale (i.e. the meter scale) and the geological length scale (i.e. the kilometer scale) using the particle simulation method directly. The related simulation results from two typical examples of significantly different length scales (i.e. a meter scale and a kilometer scale) have demonstrated the usefulness and correctness of the proposed upscale theory for simulating non-isothermal problems in two-dimensional quasi-static system.

Details

Engineering Computations, vol. 32 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 22 February 2013

Nuno Monteiro Azevedo and José V. Lemos

The rigid spherical particle models proposed in the literature for modeling fracture in rock have some difficulties in reproducing both the observed macroscopic hard rock triaxial…

Abstract

Purpose

The rigid spherical particle models proposed in the literature for modeling fracture in rock have some difficulties in reproducing both the observed macroscopic hard rock triaxial failure enveloped and compressive to tensile strength ratio. The purpose of this paper is to obtain a better agreement with the experimental behavior by presenting a 3D generalized rigid particle contact model based on a multiple contact point formulation, which allows moment transmission and includes in a straightforward manner the effect of friction at the contact level.

Design/methodology/approach

The explicit formulation of a generalized contact model is initially presented, then the proposed model is validated against known triaxial and Brazilian tests of Lac du Bonnet granite rock. The influence of moment transmission at the contact level, the number of contacts per particle and the contact friction coefficient are assessed.

Findings

The proposed contact model model, GCM‐3D, gives an excellent agreement with the Lac du Bonet granite rock, strength envelope and compressive to tensile strength ratio. It is shown that it is important to have a contact model that: defines inter‐particle interactions using a Delaunay edge criteria; includes in its formulation a contact friction coefficient; and incorporates moment transmission at the contact level.

Originality/value

The explicit formulation of a new generalized 3D contact model, GCM‐3D, is proposed. The most important features of the model, moment transmission through multiple point contacts, contact friction term contribution for the shear strength and contact activation criteria that lead to a best agreement with hard rock experimental values are introduced and discussed in an integrated manner for the first time. An important contribution for rock fracture modeling, the formulation here presented can be readily incorporated into commercial and open source software rigid particle models.

Details

Engineering Computations, vol. 30 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 April 2020

Yue Liu

The purpose of this paper is to clarify the relationship between fatigue life and kinematics of angular contact ball bearing. It proposes a new modeling method of spin to roll…

Abstract

Purpose

The purpose of this paper is to clarify the relationship between fatigue life and kinematics of angular contact ball bearing. It proposes a new modeling method of spin to roll ratio based on raceway friction, which is more accurate than the traditional raceway control theory.

Design/methodology/approach

The uniform model of spin to roll ratio based on raceway friction in a wide speed range is proposed using quasi-statics method, which considers centrifugal force, gyroscopic moment, friction force of raceway and other influencing factors. The accuracy is considerably improved compared with the static model without increasing too much computation.

Findings

A uniform model for spin to roll ratio of angular contact ball bearing based on raceway friction is established, and quite different relationships between fatigue life and speed under two operating conditions are found.

Research limitations/implications

The conclusion of this paper is based on the bearing basic fatigue life calculation theory provided by ISO/TS 16281; however, the accuracy of theory needs to be further verified.

Practical implications

This paper provides guidance for applying angular contact ball bearing, especially at a high speed.

Originality/value

This paper reveals the changing trend of fatigue life of angular contact ball bearing with the speed under different loads.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2020-0030

Details

Industrial Lubrication and Tribology, vol. 72 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 January 2018

Zhenhua Zhang, Jiaxu Wang, Guangwu Zhou and Xin Pei

This paper aims to solve the lubrication failures in the turning arm bearing of RV reducer, give some help in perfecting the bearing structure design and provide theoretical basis…

Abstract

Purpose

This paper aims to solve the lubrication failures in the turning arm bearing of RV reducer, give some help in perfecting the bearing structure design and provide theoretical basis for the reducer’s performance improvement.

Design/methodology/approach

The paper establishes a mixed lubrication analysis model to study performance parameters. According to the discretization of parameters and iteration of equations, numerical simulation and theoretical analysis are achieved in computational process.

Findings

Considering influences of contact load, real rough surface and realistic geometry of RV reducer turning arm roller bearing, the mixed lubrication analysis model is established to study the ratio of oil film thickness, pressure distribution and maximum von Mises stress in different speeds, temperatures and fillets. The results of mixed lubrication show that reasonable round corner modification, increase in temperature and speed, decrease of surface roughness and lubricant types can improve the lubrication performance.

Originality/value

The mixed lubrication analysis model is established to study the influences of contact load, real rough surface and realistic geometry of RV reducer turning arm roller bearing. Different speed, temperature, lubricant and fillet modification are also considered in the research to analyze oil film thickness, pressure distribution and maximum von Mises stress. These studies can optimize structural design of bearing and direct engineer operations.

Details

Industrial Lubrication and Tribology, vol. 70 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 October 2021

Yang Zhao, Heng Liu, Nanshan Wang, Bowen Fan and Meng Li

The anisotropic surfaces of viscoelastic materials play a role in sliding friction; the purpose of this paper is to study the effect of the anisotropic surfaces on contact area…

Abstract

Purpose

The anisotropic surfaces of viscoelastic materials play a role in sliding friction; the purpose of this paper is to study the effect of the anisotropic surfaces on contact area and the friction coefficient.

Design/methodology/approach

A complex elastic modulus and an anisotropic power spectrum are used to compute the coefficient of friction based on the extension Persson theory which considers the partial contact and the variation in the roughness slopes.

Findings

The ratios of the relative contact area that varies with velocity are obtained with different angles and eccentricities, and the effect of the elastic modulus needs to be considered. The coefficients of the friction parallel to the direction of motion decrease as the angle increases, or as the eccentricity decreases. The friction coefficients in the vertical direction change irregularly when the angles or eccentricities increase.

Originality/value

An extension of Persson’s work considering the partial contact and the effective mean square slope of the roughness is applied to study sliding friction, and the effect of the elastic modulus on contact area is considered.

Details

Industrial Lubrication and Tribology, vol. 73 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 40000