Search results

1 – 10 of over 143000
Article
Publication date: 1 December 2005

Paul McCrone, Steve Iliffe, Enid Levin, Kalpa Kharicha and Barbara Davey

There have been few economic evaluations of joint working between social and health care. This paper focuses on collaboration between professionals providing care for people aged…

Abstract

There have been few economic evaluations of joint working between social and health care. This paper focuses on collaboration between professionals providing care for people aged 75 and over, and examines the economic costs of contacts made by social workers with community nurses, GPs and older people or their carers. Two areas were studied, one where social care and primary care services were co‐located, and the other with social work teams located separately from local health services. The two forms of social care location had an impact on contacts and costs but overall it was fairly small. Contact costs made up only a small amount of the overall costs of care These findings suggest that altering the organisational arrangements for care delivery may improve the process of care delivery, but result in only minor changes to the proportion of overall resources directed to older service users.

Details

Journal of Integrated Care, vol. 13 no. 6
Type: Research Article
ISSN: 1476-9018

Keywords

Article
Publication date: 13 January 2020

Yali Zhang, Xiaogang Zhang and Zhongmin Jin

This study aims to investigate the contact behavior of nominal curved surfaces with random roughness.

Abstract

Purpose

This study aims to investigate the contact behavior of nominal curved surfaces with random roughness.

Design/methodology/approach

A deterministic model was applied to investigate the contact behavior. Numerical calculations were conducted on Gaussian and fractal profiles under a range of loading conditions. The deformation behavior is characterized in terms of three regimes including the elastic, elastoplastic and plastic regimes.

Findings

A linear relationship was observed between the real contact areas and normal loads, which is mainly governed by the plastic deformation. Surface roughness changes contact behavior by influence the transition of deformation regimes. Rougher surfaces generally demonstrate higher saturated plastic ratios.

Originality/value

The contact behavior of nominally curved surfaces with random roughness is understood in terms of the evolution of real contact areas and plastic ratios.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2019-0190.

Details

Industrial Lubrication and Tribology, vol. 72 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 March 2018

Yuqin Wen and Jin Yuan Tang

This paper aims to study the contact between rough cylindrical surfaces considering the elastic-plastic deformation of asperities.

Abstract

Purpose

This paper aims to study the contact between rough cylindrical surfaces considering the elastic-plastic deformation of asperities.

Design/methodology/approach

The elastic deformation of the nominal surface of the curved surface is considered, the contact area is discretized by the calculus thought and then the nominal distance between two surfaces is obtained by iteration after the pressure distribution is assumed. On the basis of the Zhao, Maietta and Chang elastic-plastic model, the contact area and the contact pressure of the rough cylindrical surfaces are calculated by the integral method, and then the solution for the contact between rough cylindrical surfaces is obtained.

Findings

The contact characteristic parameters of smooth surface Hertz contact, elastic contact and elastic-plastic contact between rough cylindrical surfaces are calculated under different plastic indexes and loads, and the calculation results are compared and analyzed. The analysis shows that the solution considering the elastic-plastic deformation of asperities for the contact between rough cylindrical surfaces is scientific and rational.

Originality/value

This paper provides a new effective method for the calculation of the contact between rough cylindrical surfaces.

Details

Industrial Lubrication and Tribology, vol. 70 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 25 January 2021

Fuqin Yang, Dexing Hu, Qianhao Xiao and Shun Zhao

This paper aims to study line-contact elastohydrodynamic grease lubrication properties of surface-textured rollers as well as the effect of different crown widths (dw) on oil film…

Abstract

Purpose

This paper aims to study line-contact elastohydrodynamic grease lubrication properties of surface-textured rollers as well as the effect of different crown widths (dw) on oil film thickness under textured conditions.

Design/methodology/approach

The laser processing method was used to make the micro-texture on the surface of GCr15 steel rollers; lithium grease was used as the lubricant, and line-contact elastohydrodynamic grease lubrication experiments under pure sliding conditions were performed on light interference elastohydrodynamic-lubricated experimental table.

Findings

The results show that the line-contact elastohydrodynamic grease lubrication is closely related to the textured crown width of steel rollers. At low speeds and light loads, texturing has an inevitable inhibitory effect on the formation of the lubricating oil film, and the smaller the width of the crown area, the more obvious the inhibitory effect, which is not conducive to the improvement of the lubrication condition. At high speeds and high loads, the textured roller with dw = 1 mm has the largest oil film thickness and shows better lubrication performance.

Originality/value

At present, there is little research on the surface texture of line-contact friction pairs. This work explores the effect of different textured crown width on the lubricating properties of line-contact elastohydrodynamic grease lubrication by experiment. It provides a new theoretical basis for the subsequent practical application of surface texture technology.

Details

Industrial Lubrication and Tribology, vol. 73 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 October 2021

Yang Zhao, Heng Liu, Nanshan Wang, Bowen Fan and Meng Li

The anisotropic surfaces of viscoelastic materials play a role in sliding friction; the purpose of this paper is to study the effect of the anisotropic surfaces on contact area

Abstract

Purpose

The anisotropic surfaces of viscoelastic materials play a role in sliding friction; the purpose of this paper is to study the effect of the anisotropic surfaces on contact area and the friction coefficient.

Design/methodology/approach

A complex elastic modulus and an anisotropic power spectrum are used to compute the coefficient of friction based on the extension Persson theory which considers the partial contact and the variation in the roughness slopes.

Findings

The ratios of the relative contact area that varies with velocity are obtained with different angles and eccentricities, and the effect of the elastic modulus needs to be considered. The coefficients of the friction parallel to the direction of motion decrease as the angle increases, or as the eccentricity decreases. The friction coefficients in the vertical direction change irregularly when the angles or eccentricities increase.

Originality/value

An extension of Persson’s work considering the partial contact and the effective mean square slope of the roughness is applied to study sliding friction, and the effect of the elastic modulus on contact area is considered.

Details

Industrial Lubrication and Tribology, vol. 73 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 March 2011

Sudipto Ray and S.K. Roy Chowdhury

Although dependence of contact surface temperatures between rough sliding bodies on surface topography is more explicitly described in terms of three‐dimensional (3D) topographic…

Abstract

Purpose

Although dependence of contact surface temperatures between rough sliding bodies on surface topography is more explicitly described in terms of three‐dimensional (3D) topographic parameters, no work has yet been reported on this aspect. The paper seeks to carry out experiments to systematically correlate the 3D surface parameters to the contact temperature rise.

Design/methodology/approach

The surface temperatures at the contact between a relatively smooth zinc sulphide pin held against a rotating mild steel disc of varying surface topography were measured using an infrared thermal imaging system under different load and sliding velocity conditions. The main objective was to study the effect of 3D surface roughness parameters on the contact temperature rise.

Findings

The results indicate a rise in maximum contact temperature with the increase in a number of 3D parameters, such as, average surface roughness Sa, ten‐point height parameter Sz, skewness of the surface height distribution Ssk, mean summit curvature Ssc, and developed interfacial area ratio parameter Sdr while temperature was found to decrease with increasing values of another set of parameters, such as, kurtosis of the 3D surface texture Sku, summit density of the surface Sds, surface bearing index Sbi, core fluid retention index Sci, valley fluid retention index Svi, and root mean square slope of the surface Sdq.

Practical implications

In any sliding system, with mixed or boundary lubricated conditions, it can be attempted to find the optimum value of the roughness parameters so that on suitable processing of the surfaces a lower contact temperature rise can be achieved.

Originality/value

No work has yet been reported on the effect of 3D roughness parameters on contact temperature.

Details

Industrial Lubrication and Tribology, vol. 63 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 30 August 2023

Wenxun Jiang, Wen Wang and Mingfei Ma

Due to high speeds, heavy loads, large slide-to-roll ratios (SRR) and other variable operating conditions, some rolling bearings that have been working in harsh conditions may…

Abstract

Purpose

Due to high speeds, heavy loads, large slide-to-roll ratios (SRR) and other variable operating conditions, some rolling bearings that have been working in harsh conditions may experience flash temperatures in the contact area, which may result in early damage like smearing and then affect service life. This study aims to investigate the flash temperature phenomenon of rolling bearings through theoretical and experimental analysis.

Design/methodology/approach

A technology for measuring temperature distribution in rolling ball on disk contact under lubrication was developed. The test-rig can simulate the ball bearing contact. The effects of working conditions such as entrainment speed, load, SRR and lubricating oil viscosity on the flash temperature were investigated.

Findings

The results of the theoretical calculation and experiments indicate that the parameters promoting the reduction of film thickness in elastohydrodynamic lubrication are always related with the number of flash points, even film thickness reduced to mixed lubrication. The flash temperature is easier to happen in conditions of high SRR, heavy load, slow entrainment speed and low viscosity oil.

Originality/value

This work conducts an experimental study on the flash temperature phenomenon, providing a test technology for bearing lubrication and failure investigation.

Peer review

This author has opted into Transparent Peer Review available at: https://publons.com/publon/10.1108/ILT-04-2023-0104

Details

Industrial Lubrication and Tribology, vol. 75 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 December 1957

Friction arises at the real contact area of two contacting bodies. This area depends on the mechanical properties of the bodies, geometrical configuration, and load. The authors…

Abstract

Friction arises at the real contact area of two contacting bodies. This area depends on the mechanical properties of the bodies, geometrical configuration, and load. The authors described a new optical method of determining the area of contact, developed in the Laboratory of Friction and Friction Materials of the Academy of Sciences, Russia. This method is based on reflection and diffusion of rays of light from transparent samples when passing out of one transparent medium into another having a different coefficient of refraction. The light ray passes through the contact surface without reflection only if it falls strictly perpendicularly on the surface. Owing to this, rough surfaces diffuse light and its brightness diminishes. When light passes through two surfaces of transparent bodies, the degree of diffusion becomes even greater. In places of contact of the two surfaces the interlayer of air disappears and the ray passes directly out of the one body into the other. If the two bodies have the same refractive index, the ray does not deflect from its path and no loss of intensity results.

Details

Industrial Lubrication and Tribology, vol. 9 no. 12
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 17 November 2021

Xingxing Fang, Dahan Li, Yucheng Xin, Songquan Wang, Yongbo Guo, Ningning Hu and Dekun Zhang

The purpose of this paper is to systematically study the dynamic contact stress, frictional heat and temperature field of femoral head-on-acetabular cup contact pairs in a gait…

Abstract

Purpose

The purpose of this paper is to systematically study the dynamic contact stress, frictional heat and temperature field of femoral head-on-acetabular cup contact pairs in a gait cycle.

Design/methodology/approach

In this paper, four common femoral head-on-acetabular cup contact pairs are used as the research objects, mathematical calculations and finite element simulations are adopted. The contact model of hip joint head and acetabular cup was established by finite element simulation to analyze the stress and temperature distribution of the contact interface.

Findings

The results show that the contact stress of the head-on-cup interface is inversely proportional to the contact area; high contact stress directly leads to greater frictional heat. However, hip joints with metal-on-polyethylene or ceramic-on-polyethylene paired interfaces have lower frictional heat and show a significant temperature rise in one gait cycle, which may be related to the material properties of the acetabular cup.

Originality/value

Previous studies about calculating the interface frictional heat always ignore the dynamic change process in the contact load and the contact area. This study considered the dynamic changes of the contact stress and area of the femoral head-on-acetabular cup interface, and four common contact pairs were systematically analyzed.

Details

Industrial Lubrication and Tribology, vol. 73 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 18 January 2024

Minglang Zhang, Xue Zuo and Yuankai Zhou

The purpose of this paper is to reveal the dynamic contact characteristics of the slip ring. Dynamic contact resistance models considering wear and self-excited were established…

Abstract

Purpose

The purpose of this paper is to reveal the dynamic contact characteristics of the slip ring. Dynamic contact resistance models considering wear and self-excited were established based on fractal theory.

Design/methodology/approach

The effects of tangential velocity, stiffness and damping coefficient on dynamic contact resistance are studied. The relationships between fractal parameters, wear time and contact parameters are revealed.

Findings

The results show that the total contact area decreases with the friction coefficient and fractal roughness under the same load. Self-excited vibration occurs at a low speed (less than 0.6 m/s). It transforms from stick-slip motion at 0.4 m/s to pure sliding at 0.5 m/s. A high stiffness makes contact resistance fluctuate violently, while increasing the damping coefficient can suppress the self-excited vibration and reduce the dynamic contact resistance. The fractal contact resistance model considering wear is established based on the fractal parameters models. The validity of the model is verified by the wear tests.

Originality/value

The results have a great significance to study the electrical contact behavior of conductive slip ring.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-09-2023-0300/

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 143000