Search results

1 – 10 of over 16000
Book part
Publication date: 5 October 2018

Nima Gerami Seresht, Rodolfo Lourenzutti, Ahmad Salah and Aminah Robinson Fayek

Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and…

Abstract

Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and relies on the analysis of uncertain, imprecise and incomplete information, including subjective and linguistically expressed information. Various modelling and computing techniques have been used by construction researchers and applied to practical construction problems in order to overcome these challenges, including fuzzy hybrid techniques. Fuzzy hybrid techniques combine the human-like reasoning capabilities of fuzzy logic with the capabilities of other techniques, such as optimization, machine learning, multi-criteria decision-making (MCDM) and simulation, to capitalise on their strengths and overcome their limitations. Based on a review of construction literature, this chapter identifies the most common types of fuzzy hybrid techniques applied to construction problems and reviews selected papers in each category of fuzzy hybrid technique to illustrate their capabilities for addressing construction challenges. Finally, this chapter discusses areas for future development of fuzzy hybrid techniques that will increase their capabilities for solving construction-related problems. The contributions of this chapter are threefold: (1) the limitations of some standard techniques for solving construction problems are discussed, as are the ways that fuzzy methods have been hybridized with these techniques in order to address their limitations; (2) a review of existing applications of fuzzy hybrid techniques in construction is provided in order to illustrate the capabilities of these techniques for solving a variety of construction problems and (3) potential improvements in each category of fuzzy hybrid technique in construction are provided, as areas for future research.

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Keywords

Book part
Publication date: 5 October 2018

Mohammad Raoufi, Nima Gerami Seresht, Nasir Bedewi Siraj and Aminah Robinson Fayek

Several different simulation techniques, such as discrete event simulation (DES), system dynamics (SD) and agent-based modelling (ABM), have been used to model complex…

Abstract

Several different simulation techniques, such as discrete event simulation (DES), system dynamics (SD) and agent-based modelling (ABM), have been used to model complex construction systems such as construction processes and project management practices; however, these techniques do not take into account the subjective uncertainties that exist in many construction systems. Integrating fuzzy logic with simulation techniques enhances the capabilities of those simulation techniques, and the resultant fuzzy simulation models are then capable of handling subjective uncertainties in complex construction systems. The objectives of this chapter are to show how to integrate fuzzy logic and simulation techniques in construction modelling and to provide methodologies for the development of fuzzy simulation models in construction. In this chapter, an overview of simulation techniques that are used in construction is presented. Next, the advancements that have been made by integrating fuzzy logic and simulation techniques are introduced. Methodologies for developing fuzzy simulation models are then proposed. Finally, the process of selecting a suitable simulation technique for each particular aspect of construction modelling is discussed.

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Keywords

Book part
Publication date: 12 February 2024

Lerato Aghimien, Clinton Ohis Aigbavboa and Douglas Aghimien

The current era of the fourth industrial revolution has attracted significant research on the use of digital technologies in improving construction project delivery. However, less…

Abstract

The current era of the fourth industrial revolution has attracted significant research on the use of digital technologies in improving construction project delivery. However, less emphasis has been placed on how these digital tools will influence the management of the construction workforce. To this end, using a review of existing works, this chapter explores the fourth industrial revolution and its associated technologies that can positively impact the management of the construction workforce when implemented. Also, the possible challenges that might truncate the successful deployment of digital technologies for effective workforce management were explored. The chapter submitted that implementing workforce management-specific digital platforms and other digital technologies designed for project delivery can aid effective workforce management within construction organisations. Technologies such as cloud computing, the Internet of Things, big data analytics, robotics and automation, and artificial intelligence, among others, offer significant benefits to the effective workforce management of construction organisations. However, several challenges, such as resistance to change due to fear of job loss, cost of investment in digital tools, organisational structure and culture, must be carefully considered as they might affect the successful use of digital tools and by extension, impact the success of workforce management in the organisations.

Details

Construction Workforce Management in the Fourth Industrial Revolution Era
Type: Book
ISBN: 978-1-83797-019-3

Keywords

Book part
Publication date: 5 October 2018

Aminah Robinson Fayek and Rodolfo Lourenzutti

Construction is a highly dynamic environment with numerous interacting factors that affect construction processes and decisions. Uncertainty is inherent in most aspects of…

Abstract

Construction is a highly dynamic environment with numerous interacting factors that affect construction processes and decisions. Uncertainty is inherent in most aspects of construction engineering and management, and traditionally, it has been treated as a random phenomenon. However, there are many types of uncertainty that are not naturally modelled by probability theory, such as subjectivity, ambiguity and vagueness. Fuzzy logic provides an approach for handling such uncertainties. However, fuzzy logic alone has some limitations, including its inability to learn from data and its extensive reliance on expert knowledge. To address these limitations, fuzzy logic has been combined with other techniques to create fuzzy hybrid techniques, which have helped solve complex problems in construction. In this chapter, a background on fuzzy logic in the context of construction engineering and management applications is presented. The chapter provides an introduction to uncertainty in construction and illustrates how fuzzy logic can improve construction modelling and decision-making. The role of fuzzy logic in representing uncertainty is contrasted with that of probability theory. Introductory material is presented on key definitions, properties and methods of fuzzy logic, including the definition and representation of fuzzy sets and membership functions, basic operations on fuzzy sets, fuzzy relations and compositions, defuzzification methods, entropy for fuzzy sets, fuzzy numbers, methods for the specification of membership functions and fuzzy rule-based systems. Finally, a discussion on the need for fuzzy hybrid modelling in construction applications is presented, and future research directions are proposed.

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Keywords

Book part
Publication date: 5 October 2018

Denise M. Case, Ty Blackburn and Chrysostomos Stylios

This chapter discusses the application of fuzzy cognitive map (FCM) modelling to construction management (CM) challenges and problems. It focuses on the critical issue of managing…

Abstract

This chapter discusses the application of fuzzy cognitive map (FCM) modelling to construction management (CM) challenges and problems. It focuses on the critical issue of managing the complexity and uncertainty inherent in CM by providing a new intelligent layer that enhances classical approaches to construction modelling and management. It investigates how the myriad types of internal and external factors affecting the feasibility and performance of construction projects can be modelled using a fuzzy hybrid method that explores the complex relationships among many contributing factors and assesses and evaluates their impacts on past and future projects. This chapter proposes a hybrid modelling approach in the traditional context of cost, schedule and risk management and describes how augmenting and enhancing existing state-of-the-art tools and processes in CM can assist construction managers. This chapter provides a background on the theory of FCMs, presents foundational and current research, and explains how to apply this approach in the CM domain. This chapter also provides a detailed description of how to develop, modify and employ interactive models to specific CM challenges and problems. It includes a customisable, interactive base model and demonstrates how the model has been applied to specific CM events and issues. Examples are presented that highlight the interplay between project-specific goals and characteristics and the way these impact the interrelated and often opposing triad of cost, schedule and risk. The presented examples and practical applications make this state-of-the-art approach useful to both academic and industry practitioners.

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Keywords

Book part
Publication date: 5 October 2018

Long Chen and Wei Pan

With numerous and ambiguous sets of information and often conflicting requirements, construction management is a complex process involving much uncertainty. Decision makers may be…

Abstract

With numerous and ambiguous sets of information and often conflicting requirements, construction management is a complex process involving much uncertainty. Decision makers may be challenged with satisfying multiple criteria using vague information. Fuzzy multi-criteria decision-making (FMCDM) provides an innovative approach for addressing complex problems featuring diverse decision makers’ interests, conflicting objectives and numerous but uncertain bits of information. FMCDM has therefore been widely applied in construction management. With the increase in information complexity, extensions of fuzzy set (FS) theory have been generated and adopted to improve its capacity to address this complexity. Examples include hesitant FSs (HFSs), intuitionistic FSs (IFSs) and type-2 FSs (T2FSs). This chapter introduces commonly used FMCDM methods, examines their applications in construction management and discusses trends in future research and application. The chapter first introduces the MCDM process as well as FS theory and its three main extensions, namely, HFSs, IFSs and T2FSs. The chapter then explores the linkage between FS theory and its extensions and MCDM approaches. In total, 17 FMCDM methods are reviewed and two FMCDM methods (i.e. T2FS-TOPSIS and T2FS-PROMETHEE) are further improved based on the literature. These 19 FMCDM methods with their corresponding applications in construction management are discussed in a systematic manner. This review and development of FS theory and its extensions should help both researchers and practitioners better understand and handle information uncertainty in complex decision problems.

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Keywords

Book part
Publication date: 23 September 2022

Temidayo Oluwasola Osunsanmi, Clinton Ohis Aigbavboa, Wellington Didibhuku Thwala and Ayodeji Emmanuel Oke

The idea of implementing supply chain management (SCM) principles for the construction industry was embraced by construction stakeholders to enhance the sector's performance. The…

Abstract

The idea of implementing supply chain management (SCM) principles for the construction industry was embraced by construction stakeholders to enhance the sector's performance. The analysis from the literature revealed that the implementation of SCM in the construction industry enhances the industry's value in terms of cost-saving, time savings, material management, risk management and others. The construction supply chain (CSC) can be managed using the pull or push system. This chapter also discusses the origin and proliferation of SCM into the construction industry. The chapter revealed that the concept of SCM has passed through five different eras: the creation era, the use of ERP, globalisation stage, specialisation stage and electronic stage. The findings from the literature revealed that we are presently in the fourth industrial revolution (4IR) era. At this stage, the SCM witnesses the adoption of technologies and principles driven by the 4IR. This chapter also revealed that the practice of SCM in the construction industry is centred around integration, collaboration, communication and the structure of the supply chain (SC). The forms and challenges hindering the adoption of these practices were also discussed extensively in this chapter.

Details

Construction Supply Chain Management in the Fourth Industrial Revolution Era
Type: Book
ISBN: 978-1-80382-160-3

Keywords

Content available
Book part
Publication date: 5 October 2018

Abstract

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Abstract

Details

Construction Industry Advance and Change: Progress in Eight Asian Economies Since 1995
Type: Book
ISBN: 978-1-80043-504-9

Book part
Publication date: 12 February 2024

Lerato Aghimien, Clinton Ohis Aigbavboa and Douglas Aghimien

In the quest for better construction workforce management, this chapter explored the background of workforce management and related theories, models, and practices. Through a…

Abstract

In the quest for better construction workforce management, this chapter explored the background of workforce management and related theories, models, and practices. Through a review, the chapter provided meaning to the concept of construction and workforce management. The chapter concluded that while the construction industry worldwide is important to the economic growth of the countries where it operates, the industry’s management of its workforce is challenged by several problems. These problems include the nature of the industry, skill shortage, unhealthy working environment, and poor image of the industry, among others. Also, while the construction industry is rich in diversity, this has been a major source of problems for workforce management. The chapter further revealed that to improve workforce management and attain better-performing construction organisations, careful recruitment, effective training, providing a safe working environment, putting policies to promote diversity, and ensuring innovativeness, among others, are essential.

Details

Construction Workforce Management in the Fourth Industrial Revolution Era
Type: Book
ISBN: 978-1-83797-019-3

Keywords

1 – 10 of over 16000