Search results

1 – 10 of over 1000
Article
Publication date: 2 January 2024

Xin Zou and Zhuang Rong

In repetitive projects, repetition offers more possibilities for activity scheduling at the sub-activity level. However, existing resource-constrained repetitive scheduling…

Abstract

Purpose

In repetitive projects, repetition offers more possibilities for activity scheduling at the sub-activity level. However, existing resource-constrained repetitive scheduling problem (RCRSP) models assume that there is only one sequence in performing the sub-activities of each activity, resulting in an inefficient resource allocation. This paper proposes a novel repetitive scheduling model for solving RCRSP with soft logic.

Design/methodology/approach

In this paper, a constraint programming model is developed to solve the RCRSP using soft logic, aiming at the possible relationship between parallel execution, orderly execution or partial parallel and partial orderly execution of different sub activities of the same activity in repetitive projects. The proposed model integrated crew assignment strategies and allowed continuous or fragmented execution.

Findings

When solving RCRSP, it is necessary to take soft logic into account. If managers only consider the fixed logic between sub-activities, they are likely to develop a delayed schedule. The practicality and effectiveness of the model were verified by a housing project based on eight different scenarios. The results showed that the constraint programming model outperformed its equivalent mathematical model in terms of solving speed and solution quality.

Originality/value

Available studies assume a fixed logic between sub-activities of the same activity in repetitive projects. However, there is no fixed construction sequence between sub-activities for some projects, e.g. hotel renovation projects. Therefore, this paper considers the soft logic relationship between sub-activities and investigates how to make the objective optimal without violating the resource availability constraint.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 26 January 2024

Mohamed Marzouk and Dina Hamdala

The aggressive competition in the real estate market forces real estate developers to tackle the challenge of selecting the best project construction phasing alternative. The real…

93

Abstract

Purpose

The aggressive competition in the real estate market forces real estate developers to tackle the challenge of selecting the best project construction phasing alternative. The real estate industry is characterized by high costs, high profit and high risks. The schedules of real estate projects are also characterized by having large number of repetitive activities that are executed over a long duration. The repetitiveness, long duration of execution, the high amounts of money involved and the high risk made it desirable to leverage the impact of changes in phasing plans on net present value of amounts incurred and received over the long execution and selling duration. This also changes the project progress, and delivery time as well as their respective impact on customer degree of satisfaction. This research addresses the problem of selecting the best phasing alternative for real estate development projects while maximizing customer satisfaction and project profit.

Design/methodology/approach

The research proposes a model that generates all construction phasing alternatives and performs decision-making to rank all possible phasing alternatives. The proposed model consists of five modules: (1) Phasing Sequencing module, (2) Customer Satisfaction module, (3) Cash-In calculation module, (4) Cost Estimation module and (5) Decision-making module. A case study was presented to demonstrate the practicality of the model.

Findings

The proposed model satisfies the real estate market's need for proper construction phasing plans evaluation and selection against the project's main success criteria, customer satisfaction and project profit. The proposed model generates all construction phasing alternatives and performs multi-criteria decision making to rank all possible phasing alternatives. It quantifies the score of the two previously mentioned criteria and ranks all solutions according to their overall score.

Research limitations/implications

The research proposes a model that assist real estate market's need for proper construction phasing plans evaluation and selection against the project's main success criteria, customer satisfaction and project profit. The proposed model can be used to conclude general guidelines and common successful practices to be used by real estate developers when deciding the construction phasing plan. In this study the model is based on business models where all the project units are sold, rental cases are not considered. Also, the budget limitations that might exist when phasing is not considered in the model computations.

Originality/value

The model can be used as a complete platform that can hold all real estate project data, process revenues and cost information for estimating profit, plotting cash flow profiles, quantifying the degree of customer satisfaction attributable to each phasing alternative and providing recommendation showing the best one. The model can be used to conclude general guidelines and common successful practices to be used by real estate developers when tackling the challenge of selecting construction phasing plans.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 17 November 2022

Asli Pelin Gurgun, Kerim Koc and Handan Kunkcu

Completing construction projects within the planned schedule has widely been considered as one of the major project success factors. This study investigates the use of…

1033

Abstract

Purpose

Completing construction projects within the planned schedule has widely been considered as one of the major project success factors. This study investigates the use of technologies to address delays in construction projects and aims to address three research questions (1) to identify the adopted technologies and proposed solutions in the literature, (2) to explore the reasons why the delays cannot be prevented despite disruptive technologies and (3) to determine the major strategies to prevent delays in construction projects.

Design/methodology/approach

In total, 208 research articles that used innovative technologies, methods, or tools to avoid delays in construction projects were investigated by conducting a comprehensive literature review. An elaborative content analysis was performed to cover the implemented technologies and their transformation, highlighted research fields in relation to selected technologies, focused delay causes and corresponding delay mitigation strategies and emphasized project types with specific delay causes. According to the analysis results, a typological framework with appropriate technological means was proposed.

Findings

The findings revealed that several tools such as planning, imaging, geo-spatial data collection, machine learning and optimization have widely been adopted to address specific delay causes. It was also observed that strategies to address various delay causes throughout the life cycle of construction projects have been overlooked in the literature. The findings of the present research underpin the trends and technological advances to address significant delay causes.

Originality/value

Despite the technological advancements in the digitalization era of Industry 4.0, many construction projects still suffer from poor schedule performance. However, the reason of this is questionable and has not been investigated thoroughly.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 3
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 16 November 2023

Ehsan Goudarzi, Hamid Esmaeeli, Kia Parsa and Shervin Asadzadeh

The target of this research is to develop a mathematical model which combines the Resource-Constrained Multi-Project Scheduling Problem (RCMPSP) and the Multi-Skilled…

Abstract

Purpose

The target of this research is to develop a mathematical model which combines the Resource-Constrained Multi-Project Scheduling Problem (RCMPSP) and the Multi-Skilled Resource-Constrained Project Scheduling Problem (MSRCPSP). Due to the importance of resource management, the proposed formulation comprises resource leveling considerations as well. The model aims to simultaneously optimize: (1) the total time to accomplish all projects and (2) the total deviation of resource consumptions from the uniform utilization levels.

Design/methodology/approach

The K-Means (KM) and Fuzzy C-Means (FCM) clustering methods have been separately applied to discover the clusters of activities which have the most similar resource demands. The discovered clusters are given to the scheduling process as priori knowledge. Consequently, the execution times of the activities with the most common resource requests will not overlap. The intricacy of the problem led us to incorporate the KM and FCM techniques into a meta-heuristic called the Bi-objective Symbiosis Organisms Search (BSOS) algorithm so that the real-life samples of this problem could be solved. Therefore, two clustering-based algorithms, namely, the BSOS-KM and BSOS-FCM have been developed.

Findings

Comparisons between the BSOS-KM, BSOS-FCM and the BSOS method without any clustering approach show that the clustering techniques could enhance the optimization process. Another hybrid clustering-based methodology called the NSGA-II-SPE has been added to the comparisons to evaluate the developed resource leveling framework.

Practical implications

The practical importance of the model and the clustering-based algorithms have been demonstrated in planning several construction projects, where multiple water supply systems are concurrently constructed.

Originality/value

Reviewing the literature revealed that there was a need for a hybrid formulation that embraces the characteristics of the RCMPSP and MSRCPSP with resource leveling considerations. Moreover, the application of clustering algorithms as resource leveling techniques was not studied sufficiently in the literature.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 16 August 2022

Zhijiang Wu and Guofeng Ma

The purpose of this study is to automatically generate a construction schedule by extracting data from the BIM (Building Information Modeling) model and combining an ontology…

Abstract

Purpose

The purpose of this study is to automatically generate a construction schedule by extracting data from the BIM (Building Information Modeling) model and combining an ontology constraint rule and a genetic algorithm (GA).

Design/methodology/approach

This study developed a feasible multi-phase framework to generate the construction schedule automatically through extracting information from the BIM, utilizing the ontology constraint rule to demonstrate the relationships between all the components and finally using the GA to generate the construction schedule.

Findings

To present the functionality of the framework, a prototype case is adopted to show the whole procedure, and the results show that the scheme designed in this study can quickly generate the schedule and ensure that it can satisfy the requirements of logical constraints and time parameter constraints.

Practical implications

A proper utilization of conceptual framework can contribute to the automatic generation of construction schedules and significantly reduce manual errors in the Architectural, Engineering, and Construction (AEC) industry. Moreover, a scheme of BIM-based ontology and GA for construction schedule generation may reduce additional manual work and improve schedule management performance.

Social implications

The hybrid approach combines the ontology constraint rule and GA proposed in this study, and it is an effective attempt to generate the construction schedule, which provides a direct indicator for the schedule control of the project.

Originality/value

In this study, the data application process of the BIM model is divided into four modules: extraction, processing, optimization, and output. The key technologies including secondary development, ontology theory, and GA are introduced to develop a multi-phase framework for the automatic generation of the construction schedule and to realize the schedule prediction under logical constraints and duration interference.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 10
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 6 February 2024

Moslem Sheikhkhoshkar, Hind Bril El Haouzi, Alexis Aubry and Farook Hamzeh

In academics and industry, significant efforts have been made to lead planners and control teams in evaluating project performance and control. In this context, numerous control…

Abstract

Purpose

In academics and industry, significant efforts have been made to lead planners and control teams in evaluating project performance and control. In this context, numerous control metrics have been devised and put into practice, often with little emphasis on analyzing their underlying concepts. To cover this gap, this research aims to identify and analyze a holistic list of control metrics and their functionalities in the construction industry.

Design/methodology/approach

A multi-step analytical approach was conducted to achieve the study’s objectives. First, a holistic list of control metrics and their functionalities in the construction industry was identified. Second, a quantitative analysis based on social network analysis (SNA) was implemented to discover the most important functionalities.

Findings

The results revealed that the most important control metrics' functionalities (CMF) could differ depending on the type of metrics (lagging and leading) and levels of control. However, in general, the most significant functionalities include managing project progress and performance, evaluating the look-ahead level’s performance, measuring the reliability and stability of workflow, measuring the make-ready process, constraint management and measuring the quality of construction flow.

Originality/value

This research will assist the project team in getting a comprehensive sensemaking of planning and control systems and their functionalities to plan and control different dynamic aspects of the project.

Details

Smart and Sustainable Built Environment, vol. 13 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 18 November 2022

Jing Yin, Jiahao Li, Ahui Yang and Shunyao Cai

In regarding to operational efficiency and safety improvements, multiple tower crane service scheduling problem is one of the main problems related to tower crane operation but…

Abstract

Purpose

In regarding to operational efficiency and safety improvements, multiple tower crane service scheduling problem is one of the main problems related to tower crane operation but receives limited attention. The current work presents an optimization model for scheduling multiple tower cranes' service with overlapping areas while achieving collision-free between cranes.

Design/methodology/approach

The cooperative coevolutionary genetic algorithm (CCGA) was proposed to solve this model. Considering the possible types of cross-tasks, through effectively allocating overlapping area tasks to each crane and then prioritizing the assigned tasks for each crane, the makespan of tower cranes was minimized and the crane collision avoidance was achieved by only allowing one crane entering the overlapping area at one time. A case study of the mega project Daxing International Airport has been investigated to evaluate the performance of the proposed algorithm.

Findings

The computational results showed that the CCGA algorithm outperforms two compared algorithms in terms of the optimal makespan and the CPU time. Also, the convergence of CCGA was discussed and compared, which was better than that of traditional genetic algorithm (TGA) for small-sized set (50 tasks) and was almost the same as TGA for large-sized sets.

Originality/value

This paper can provide new perspectives on multiple tower crane service sequencing problem. The proposed model and algorithm can be applied directly to enhance the operational efficiency of tower cranes on construction site.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 3
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 11 August 2022

Yanhu Han, Xiyu Yan and Poorang Piroozfar

As a strand in industrialization movement in architecture, engineering and construction (AEC) industry, prefabricated construction (PC) has gained widespread popularity due to…

1846

Abstract

Purpose

As a strand in industrialization movement in architecture, engineering and construction (AEC) industry, prefabricated construction (PC) has gained widespread popularity due to high efficiency, energy saving, low environmental impacts, safety and other advantages of PC. Well-managed supply chain can further leverage the advantages of PC. However, there is a lack of more systematically overview of the prefabricated construction supply chain (PCSC). This paper aims to comb the current status and look into the future direction of PCSC by reviewing the existing research.

Design/methodology/approach

In total, 131 articles related to prefabricated construction supply chain management (PCSCM) from 2000 to 2022 have been collated to (1) conduct a bibliometric analysis by using VOSviewer, including the literature sources, keywords co-occurrence, co-authorships, authorship citation and country active in the field of PCSCM; (2) classify and summarize the status of research in PCSCM through qualitative discussion and (3) point out the future research directions.

Findings

In total, 131 articles are carried out for bibliometric analysis and in-depth qualitative discussion, the visualization maps and the main research themes in the field of PCSCM are obtained. The results show that supply chain intelligentization and informatization are hot topics. Finally, future research directions that should be paid attention to in the field of PCSCM are pointed out.

Practical implications

This study can help project managers understand the current status and problems of PCSC operations and provide a basis for future management decisions.

Originality/value

Compared with previous studies, this study adds the dimension of “article authorship” to the quantitative analysis and discusses the research themes in the field of PCSCM in a comprehensive manner. In addition, this paper deeply discusses the main research topics from both the specific contents and research methods adopted.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 10
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 7 June 2023

Debadyuti Das and Aditya Singh

The present work seeks to determine the optimal delivery schedule of equipment at a project site in the backdrop of limited storage space, at a minimum cost, and without…

Abstract

Purpose

The present work seeks to determine the optimal delivery schedule of equipment at a project site in the backdrop of limited storage space, at a minimum cost, and without disturbing the overall project schedule. In addition, the optimized delivery schedule helps in minimizing the fluctuating requirements of space at the project site across the entire project lifespan.

Design/methodology/approach

The study is carried out at a Steel plant operating in a constrained space but undergoing a production capacity expansion. The problem motivated us to explore the possibility of postponing the delivery dates of certain equipment closer to the erection dates without compromising on the project schedule. Given the versatility of linear programming models in dealing with such schedule optimization problems, the authors formulated the above problem as a Zero-One Integer Linear Programming problem.

Findings

The model is implemented for all the new equipment arriving for two major units – the Hot Strip Mill (HSM) and the Blast Furnace (BF). It generates an optimized delivery schedule by delaying the delivery of some equipment by a certain number of periods, without compromising the overall project schedule and at a minimum storage cost. The average space utilization increases by 25.85 and 14.79% in HSM and BF units respectively. The fluctuations in space requirements are reduced substantially in both units.

Originality/value

The study shows a timeline in the form of a Gantt chart for the delivery of equipment, storage of equipment across different periods, and the number of periods for which the delivery of certain equipment needs to be postponed. The study uses linearly increasing storage costs with the increase in the number of periods for storage of the equipment in the temporary shed.

Highlights

  1. Determined the optimal delivery schedule of the equipment in a project environment in the backdrop of limited storage space in the project site.

  2. Formulated the above problem as a Zero-One Integer Linear Programming (ILP) problem.

  3. The average space utilization has increased by 25.85 and 14.79% in HSM and BF units respectively.

  4. The optimized delivery schedule helps in reducing the fluctuations in space requirements substantially across the entire lifespan of the project.

  5. The timeline of delivery of equipment, storage of equipment across different periods and periods of postponement of the equipment are shown in the form of a Gantt Chart.

Determined the optimal delivery schedule of the equipment in a project environment in the backdrop of limited storage space in the project site.

Formulated the above problem as a Zero-One Integer Linear Programming (ILP) problem.

The average space utilization has increased by 25.85 and 14.79% in HSM and BF units respectively.

The optimized delivery schedule helps in reducing the fluctuations in space requirements substantially across the entire lifespan of the project.

The timeline of delivery of equipment, storage of equipment across different periods and periods of postponement of the equipment are shown in the form of a Gantt Chart.

Details

Journal of Advances in Management Research, vol. 20 no. 5
Type: Research Article
ISSN: 0972-7981

Keywords

Article
Publication date: 1 January 2024

Masoud Parsi, Vahid Baradaran and Amir Hossein Hosseinian

The purpose of this study is to develop an integrated model for the stochastic multiproject scheduling and material ordering problems, where some of the prominent features of…

Abstract

Purpose

The purpose of this study is to develop an integrated model for the stochastic multiproject scheduling and material ordering problems, where some of the prominent features of offshore projects and their environmental-degrading effects have been embraced as well. The durations of activities are uncertain in this model. The developed formulation is tri-objective that seeks to minimize the expected time, total cost and CO2 emission of all projects.

Design/methodology/approach

A new version of the multiobjective multiagent optimization (MOMAO) algorithm has been proposed to solve the amalgamated model. To empower the MOMAO, various procedures of this algorithm have been modified based on the multiattribute utility theory (MAUT) technique. Along with the MOMAO, this study has employed four other meta-heuristic methodologies to solve the model as well.

Findings

The outputs of the MOMAO have been put to test against four other optimizers in terms of convergence, diversity, uniformity and computation times. The results of the Mean Ideal Distance (MID) metric have revealed that the MOMAO has strongly prevailed its rival optimizers. In terms of diversity of the acquired solutions, the MOMAO has ranked the first among all employed optimizers since this algorithm has offered the best solutions in 56.66 and 63.33% of the test problems regarding the diversification metric and hyper-volume metrics. Regarding the uniformity of results, which is measured through the spacing metric (SP), the MOMAO has presented the best SP values in more than 96% of the test problems. The MOMAO has needed more computation times in comparison to its rivals.

Practical implications

A real case study comprising two concurrent offshore projects has been offered. The proposed formulation and the MOMAO have been implemented for this case study, and their effectiveness has been appraised.

Originality/value

Very few studies have focused on presenting an integrated formulation for the stochastic multiproject scheduling and material ordering problems. The model embraces some of the characteristics of the offshore projects which have not been adequately studied in the literature. Limited capacities of the offshore platforms and cargo vessels have been embedded in the proposed model. The offshore platforms have spatial limitations in storing the required materials. The vessels are also capacitated and they also have limited shipment capacities. Some of the required materials need to be transported from the base to the offshore platform via a fleet of cargo vessels. The workforces and equipment can become idle on the offshore platform due to material shortage. Various offshore-related costs have been integrated as a minimization objective function in the model. The cargo vessels release CO2 detrimental emissions to the environment which are sought to be minimized in the developed formulation. To the best of the authors' knowledge, the MOMAO has not been sufficiently employed as a solution methodology for the stochastic multiproject scheduling and material ordering problems.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of over 1000