Search results

1 – 10 of over 7000
Article
Publication date: 11 March 2022

Qun Gao, Bin Liu, Jide Sun, Chunlu Liu and Youquan Xu

This paper aims to better understand the linkage between CO2 emitters and industrial consumers. The border-crossing frequency is applied to calculate the average number of steps…

Abstract

Purpose

This paper aims to better understand the linkage between CO2 emitters and industrial consumers. The border-crossing frequency is applied to calculate the average number of steps that a country takes in relation to the CO2 emissions of its construction industry. The maximum border-crossing frequency and declining speed of CO2 transfer are used to reveal the relationship between the length of production chains and the transfer efficiency of construction products.

Design/methodology/approach

This paper maps the CO2 transfer that accompanies global production chains using the frequency of border crossing in the production processes of construction products. As the basic analysis framework, a multi-regional input–output model is adopted to analyse the average border-crossing frequency of CO2 transfer. Additionally, indicators including the maximum border-crossing frequency and declining speed of CO2 transfer are employed. Also, the maximum border-crossing frequency and declining speed of CO2 transfer are used to reveal the relationship between the length of production chains and the transfer efficiency of construction products.

Findings

The results indicate that 85.49% of the CO2 in construction products needs to be processed in at least one country, reflecting that direct trade is the major pattern of transfer of CO2 from primary producers in global construction industries. The maximum border-crossing frequency is 4.88 for 15 economies, meaning that construction products cross the international borders up to 4.88 times before they are absorbed by the final users. The scale of the average border-crossing frequency ranged from 1.16 to 1.87 over 2000–2014, indicating that the original construction products crossed the international borders at least 1.16 times to satisfy the final demand of the consuming countries.

Research limitations/implications

The data from the economic MRIO tables in the WIOD are only available until 2014, which is a limitation for conducting this research in recent years.

Originality/value

The fragmentation of production is not only reshaping global trade patterns, but also leading to the separation of CO2 emitters and final consumers in production chains. A growing number of studies have focussed on the impact of production fragmentation on accounting for regional and national CO2 emissions, but little research has been done at the scale of a specific industry. The major contribution of this paper lies in mapping the CO2 emissions that accompany the production chains of construction products from the perspectives of both magnitude and length. Additionally, this paper is the first to propose using maximum border-crossing frequency and declining speed to analyse the characteristics of global production chains induced by the final demand of major economies for construction products.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 6
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 3 February 2022

Juan Du, Yan Xue, Vijayan Sugumaran, Min Hu and Peng Dong

For prefabricated building construction, improper handling of the production scheduling for prefabricated components is one of the main reasons that affect project performance…

Abstract

Purpose

For prefabricated building construction, improper handling of the production scheduling for prefabricated components is one of the main reasons that affect project performance, which causes overspending, schedule overdue and quality issues. Prior research on prefabricated components production schedule has shown that optimizing the flow shop scheduling problem (FSSP) is the basis for solving this issue. However, some key resources and the behavior of the participants in the context of actual prefabricated components production are not considered comprehensively.

Design/methodology/approach

This paper characterizes the production scheduling of the prefabricated components problem into a permutation flow shop scheduling problem (PFSSP) with multi-optimization objectives, and limitation on mold and buffers size. The lean construction principles of value-based management (VBM) and just-in-time (JIT) are incorporated into the production process of precast components. Furthermore, this paper applies biogeography-based optimization (BBO) to the production scheduling problem of prefabricated components combined with some improvement measures.

Findings

This paper focuses on two specific scenarios: production planning and production rescheduling. In the production planning stage, based on the production factor, this study establishes a multi-constrained and multi-objective prefabricated component production scheduling mathematical model and uses the improved BBO for prefabricated component production scheduling. In the production rescheduling stage, the proposed model allows real-time production plan adjustments based on uncertain events. An actual case has been used to verify the effectiveness of the proposed model and the improved BBO.

Research limitations/implications

With respect to limitations, only linear weighted transformations are used for objective optimization. In regards to research implications, this paper considers the production of prefabricated components in an environment where all parties in the supply chain of prefabricated components participate to solve the production scheduling problem. In addition, this paper creatively applies the improved BBO to the production scheduling problem of prefabricated components. Compared to other algorithms, the results show that the improved BBO show optimized result.

Practical implications

The proposed approach helps prefabricated component manufacturers consider complex requirements which could be used to formulate a more scientific and reasonable production plan. The proposed plan could ensure the construction project schedule and balance the reasonable requirements of all parties. In addition, improving the ability of prefabricated component production enterprises to deal with uncertain events. According to actual production conditions (such as the occupation of mold resources and storage resources of completed components), prefabricated component manufacturers could adjust production plans to reduce the cost and improve the efficiency of the whole prefabricated construction project.

Originality/value

The value of this article is to provide details of the procedures and resource constraints from the perspective of the precast components supply chain, which is closer to the actual production process of prefabricated components. In addition, developing the production scheduling for lean production will be in line with the concept of sustainable development. The proposed lean production scheduling could establish relationships between prefabricated component factory manufacturers, transportation companies, on-site contractors and production workers to reduce the adverse effects of emergencies on the prefabricated component production process, and promote the smooth and efficient operation of construction projects.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 17 June 2022

Emmanuel Itodo Daniel and Olalekan Oshodi

The purpose of this study is to present an overview of the existing knowledge on the combined application of lean, off-site and simulation (LOS) in housing delivery.

Abstract

Purpose

The purpose of this study is to present an overview of the existing knowledge on the combined application of lean, off-site and simulation (LOS) in housing delivery.

Design/methodology/approach

A systematic literature review approach was adopted. Based on a comprehensive search using Scopus, Web of Science and the International Group for Lean Construction databases, 66 relevant journal articles were identified and analysed.

Findings

This study found that the most significant impacts of the combined application of LOS in housing delivery are the capacity to visualise the production processes as a whole in real time, exposure and removal of non-value-adding activities from the production and faster delivery. However, the combined application of LOS is low compared to a single application of each technique in housing delivery.

Practical implications

The results provide relevant stakeholders and actors in the housing sector (private and public housing developers, off-site housing manufacturers and constructors, housing associations and government housing agencies, among others) with the information needed to improve the outcomes of housing delivery through the application of LOS.

Originality/value

This study contributes to the ongoing debate on addressing the global housing shortage by presenting an integrated overview of the existing knowledge on the impact of the nexus of LOS and providing compelling evidence for its usage in housing delivery. It also demonstrates how the combined application of LOS supports the achievement of the flow and value view in the transformation flow value model, which was not previously reported.

Details

Construction Innovation , vol. 23 no. 5
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 28 April 2022

Zul-Atfi Ismail

The purpose of this paper is to show that the growing global trend of quality assurance indicates the potential of precast concrete (PC) to improve construction quality and…

Abstract

Purpose

The purpose of this paper is to show that the growing global trend of quality assurance indicates the potential of precast concrete (PC) to improve construction quality and productivity, reduce wasteful construction, and achieve design standardization and to accelerate construction time. However, its current approach for dynamic characteristics, such as stiffness and displacement on beam-column connection system design, is not effective in achieving the required quality and operational requirements.

Design/methodology/approach

A design tool based on the literature and data analysis in product planning and safety is proposed for the practice of PC building construction.

Findings

The results reveal the need for improvement of PC building performance in the construction industry, especially for the beam-column connection system. The issues include improper design, improper specification and defective concrete and steel components compared to other manufacturing methods.

Originality/value

A novel and sophisticated technique based on physical internet-enabled building information modeling (PI-BIM) is proposed to improve the planning process and safety for PC buildings in Malaysia.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 3
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 13 September 2022

Oliver Disney, Mattias Roupé, Mikael Johansson and Alessio Domenico Leto

Building information modeling (BIM) is mostly limited to the design phase where two parallel processes exist, i.e. creating 2D-drawings and BIM. Towards the end of the design…

4131

Abstract

Purpose

Building information modeling (BIM) is mostly limited to the design phase where two parallel processes exist, i.e. creating 2D-drawings and BIM. Towards the end of the design process, BIM becomes obsolete as focus shifts to producing static 2D-drawings, which leads to a lack of trust in BIM. In Scandinavia, a concept known as Total BIM has emerged, which is a novel “all-in” approach where BIM is the single source of information throughout the project. This paper's purpose is to investigate the overall concept and holistic approach of a Total BIM project to support implementation and strategy work connected to BIM.

Design/methodology/approach

Qualitative data were collected through eight semi-structured interviews with digitalization leaders from the case study project. Findings were analyzed using a holistic framework to BIM implementation.

Findings

The Total BIM concept was contingent on the strong interdependences between commonly found isolated BIM uses. Four main success factors were identified, production-oriented BIM as the main contractual and legally binding construction document, cloud-based model management, user-friendly on-site mobile BIM software and strong leadership.

Originality/value

A unique case is studied where BIM is used throughout all project phases as a single source of information and communication platform. No 2D paper drawings were used on-site and the Total BIM case study highlights the importance of a new digitalized construction process.

Details

Smart and Sustainable Built Environment, vol. 13 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 30 October 2023

Oluseyi Julius Adebowale and Justus Ngala Agumba

The United Nations has demonstrated a commitment to preserving the ecosystem through its 2030 sustainable development goals agenda. One crucial objective of these goals is to…

Abstract

Purpose

The United Nations has demonstrated a commitment to preserving the ecosystem through its 2030 sustainable development goals agenda. One crucial objective of these goals is to promote a healthy ecosystem and discourage practices that harm it. Building materials production significantly contributes to the emissions of greenhouse gases. This poses a threat to the ecosystem and prompts a growing demand for sustainable building materials (SBMs). The purpose of this study is to investigate SBMs to determine their utilization in construction operations and the potential impact their application could have on construction productivity.

Design/methodology/approach

A systematic review of the existing literature in the field of SBMs was conducted for the study. The search strings used were “sustainable” AND (“building” OR “construction”) AND “materials” AND “productivity”. A total of 146 articles were obtained from the Scopus database and reviewed.

Findings

Bio-based, cementitious and phase change materials were the main categories of SBMs. Materials in these categories have the potential to substantially contribute to sustainability in the construction sector. However, challenges such as availability, cost, expertise, awareness, social acceptance and resistance to innovation must be addressed to promote the increased utilization of SBMs and enhance construction productivity.

Originality/value

Many studies have explored SBMs, but there is a dearth of studies that address productivity in the context of SBMs, which leaves a gap in understanding. This study addresses this gap by drawing on existing studies to determine the potential implications that using SBMs could have on construction productivity.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 25 November 2022

Zhijia You

The existing literature has been mainly focused on local problems but without an overall framework for studying the top-level planning of intelligent construction from a…

Abstract

Purpose

The existing literature has been mainly focused on local problems but without an overall framework for studying the top-level planning of intelligent construction from a systematic perspective. The purpose of this paper is to fill this gap.

Design/methodology/approach

This research adopts a deductive research approach.

Findings

This research proposes a reference architecture and related business scenario framework for intelligent construction based on the existing theory and industrial practice.

Originality/value

The main contribution of this research is to provide a useful reference to the Chinese government and industry for formulating digital transformation strategies, as well as suggests meaningful future research directions in the construction industry.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 5 April 2024

Wenwei Huang, Deyu Zhong and Yanlin Chen

Construction enterprises are achieving the goal of production safety by increasingly focusing on the critical factor of “human” and the impact of individual characteristics on…

Abstract

Purpose

Construction enterprises are achieving the goal of production safety by increasingly focusing on the critical factor of “human” and the impact of individual characteristics on safety performance. Emotional intelligence is categorized into three models: skill-based, trait-based and emotional learning systems. However, the mechanism of action and the internal relationship between emotional intelligence and safety performance must be further studied. This study intends to examine the internal mechanism of emotional intelligence on safety performance in construction projects, which would contribute to the safety management of construction enterprises.

Design/methodology/approach

A structural equation model exploring the relationship between emotional intelligence and safety performance is developed, with political skill introduced as an independent dimension, situational awareness presented as a mediator, and management safety commitment introduced as a moderator. Data were collected by a random questionnaire and analyzed by SPSS 24.0 and AMOS 26.0. The structural equation model tested the mediation hypothesis, and the PROCESS macro program tested the moderated mediation hypothesis.

Findings

The results showed that construction workers' emotional intelligence directly correlates with safety performance, and situational awareness plays a mediating role in the relationship between emotional intelligence and the safety performance of construction workers. Management safety commitment weakens the positive predictive relationships between emotional intelligence and situational awareness and between emotional intelligence and safety performance.

Originality/value

This research reveals a possible impact of emotional intelligence on safety performance. Adding political skills to the skill-based model of emotional intelligence received a test pass. Political skill measures the sincere and cooperative skills of construction workers. Using people as a critical element plays a role in the benign mechanism of “Emotional Intelligence – Situational Awareness – Safety Performance.” Improving emotional intelligence skills through training, enhancing situational awareness, understanding, anticipation and coordination and activating management environment factors can improve safety performance. Construction enterprises should evaluate and train workers' emotional intelligence to improve workers' situational awareness and safety performance.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 7 November 2023

Buddhini Ginigaddara, Thayaparan Gajendran and Cameron Beard

Offsite construction (OSC) is a modern method of construction (MMC) that involves manufacturing and assembly of buildings. Industry 4.0-driven technological advancements have…

Abstract

Purpose

Offsite construction (OSC) is a modern method of construction (MMC) that involves manufacturing and assembly of buildings. Industry 4.0-driven technological advancements have accelerated OSC uptake causing many skilled construction workers requiring re-skilling or up-skilling. Quantity surveyors currently play an important role throughout a construction project life cycle, and hence, their knowledge on OSC projects is vital for the continuity of quantity surveying (QS) profession. The purpose of this paper is to critically review QS education in an OSC perspective and to propose strategies for up-skilling.

Design/methodology/approach

This research includes a detailed literature review of QS and OSC to evaluate how OSC affects the QS profession. Publicly available information on the university websites on accredited QS and construction management degrees was reviewed to identify OSC and MMC references, specifically the content listing and learning outcomes.

Findings

Out of the 315 degrees offered by 157 universities, only 69 degrees in 32 universities refer to OSC or MMC. OSC concept is explicitly referred in subjects related to construction technology, production management, lean construction, digital construction and MMC. As such, the research suggests including lean production principles, OSC techniques and design philosophies such as design for manufacture and assembly be added to the QS curricula.

Research limitations/implications

This research is a comprehensive desktop study that does not involve empirical data-based evaluation. Research findings inform strategies to improve QS education and professional competencies.

Originality/value

To the best of the authors’ knowledge, this paper is the first of its kind that evaluates accredited QS degrees and learning requirements in an OSC perspective.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Content available
Article
Publication date: 12 April 2023

Arpit Singh, Vimal Kumar, Ankesh Mittal and Pratima Verma

This study aims to set out to identify and evaluate potential obstacles to successfully implementing lean construction (LC) as a result.

Abstract

Purpose

This study aims to set out to identify and evaluate potential obstacles to successfully implementing lean construction (LC) as a result.

Design/methodology/approach

Several indicators were recognized as major obstacles following an exhaustive assessment of the literature and a multicriteria decision analysis based on the analytic hierarchy process (AHP) of information obtained from a questionnaire survey that was directed to practitioners in the Indian construction industry.

Findings

The results of this AHP model suggest that “Managerial” and “Inadequate resources” categories with a priority weight of “0.361” and “0.309” have the highest levels of influence, respectively, while “Inadequate knowledge” and “just in time (JIT)” categories with a priority weight of “0.053” and “0.034” have the lowest levels of influence, respectively.

Research limitations/implications

Construction companies can use the study’s findings as a guide to determine whether they are ready to embrace LC, learn more about the components needed for implementation or investigate any challenges that may arise. These businesses can then create plans to promote the adoption and application of the lean philosophy.

Originality/value

The Indian construction industry may see great success with LC management initiatives. LC concepts have been adopted by many nations, but during the past 20 years, there has only appeared to be a limited amount of lean implementation in the Indian construction industry. It seems that several structural and cultural barriers are preventing its effective implementation. Organizations will not be able to determine what improvement efforts are required, where these efforts should be directed or which initiatives could provide the best outcomes if they are unaware of the elements that influence the effective implementation of LC.

Details

Construction Innovation , vol. 24 no. 1
Type: Research Article
ISSN: 1471-4175

Keywords

1 – 10 of over 7000