Search results

1 – 10 of over 4000
Article
Publication date: 16 April 2024

Shilong Zhang, Changyong Liu, Kailun Feng, Chunlai Xia, Yuyin Wang and Qinghe Wang

The swivel construction method is a specially designed process used to build bridges that cross rivers, valleys, railroads and other obstacles. To carry out this construction…

Abstract

Purpose

The swivel construction method is a specially designed process used to build bridges that cross rivers, valleys, railroads and other obstacles. To carry out this construction method safely, real-time monitoring of the bridge rotation process is required to ensure a smooth swivel operation without collisions. However, the traditional means of monitoring using Electronic Total Station tools cannot realize real-time monitoring, and monitoring using motion sensors or GPS is cumbersome to use.

Design/methodology/approach

This study proposes a monitoring method based on a series of computer vision (CV) technologies, which can monitor the rotation angle, velocity and inclination angle of the swivel construction in real-time. First, three proposed CV algorithms was developed in a laboratory environment. The experimental tests were carried out on a bridge scale model to select the outperformed algorithms for rotation, velocity and inclination monitor, respectively, as the final monitoring method in proposed method. Then, the selected method was implemented to monitor an actual bridge during its swivel construction to verify the applicability.

Findings

In the laboratory study, the monitoring data measured with the selected monitoring algorithms was compared with those measured by an Electronic Total Station and the errors in terms of rotation angle, velocity and inclination angle, were 0.040%, 0.040%, and −0.454%, respectively, thus validating the accuracy of the proposed method. In the pilot actual application, the method was shown to be feasible in a real construction application.

Originality/value

In a well-controlled laboratory the optimal algorithms for bridge swivel construction are identified and in an actual project the proposed method is verified. The proposed CV method is complementary to the use of Electronic Total Station tools, motion sensors, and GPS for safety monitoring of swivel construction of bridges. It also contributes to being a possible approach without data-driven model training. Its principal advantages are that it both provides real-time monitoring and is easy to deploy in real construction applications.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 11 January 2023

Ibrahim Yahaya Wuni and Khwaja Mateen Mazher

Modular integrated construction (MiC) is a modern construction method innovating and reinventing the traditional site-based construction method. As it integrates advanced…

Abstract

Purpose

Modular integrated construction (MiC) is a modern construction method innovating and reinventing the traditional site-based construction method. As it integrates advanced manufacturing principles and requires offsite production of volumetric building components, several factors and conditions must converge to make the MiC method suitable and efficient for building projects in each context. This paper aims to present a knowledge-based decision support system (KB-DSS) for assessing a project’s suitability for the MiC method.

Design/methodology/approach

The KB-DSS uses 21 significant suitability decision-making factors identified through literature review, consultation of experts and questionnaire surveys. It has a knowledge base, a DSS and a user interface. The knowledge base comprises IF-THEN production rules to compute the MiC suitability score with the efficient use of the powerful reasoning and explanation capabilities of DSS.

Findings

The tool receives the inputs of a decision-maker, computes the MiC suitability score for a given project and generates recommendations based on the score. Three real-world projects in Hong Kong are used to demonstrate the applicability of the tool for solving the MiC suitability assessment problem.

Originality/value

This study established the complex and competing significant conditions and factors determining the suitability of the MiC method for construction projects. It developed a unique tool combining the capabilities of expert systems and decision support system to address the complex problem of assessing the suitability of the MiC method for construction projects in a high-density metropolis.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 16 October 2023

Dongqiang Cao and Lianhua Cheng

In the evolution process of building construction accidents, there are key nodes of risk change. This paper aims to quickly identify the key nodes and quantitatively assess the…

88

Abstract

Purpose

In the evolution process of building construction accidents, there are key nodes of risk change. This paper aims to quickly identify the key nodes and quantitatively assess the node risk. Furthermore, it is essential to propose risk accumulation assessment method of building construction.

Design/methodology/approach

Authors analyzed 419 accidents investigation reports on building construction. In total, 39 risk factors were identified by accidents analysis. These risk factors were combined with 245 risk evolution chains. Based on those, Gephi software was used to draw the risk evolution network model for building construction. Topological parameters were applied to interpret the risk evolution network characteristic.

Findings

Combining complex network with risk matrix, the standard of quantitative classification of node risk level is formulated. After quantitative analysis of node risk, 7 items of medium-risk node, 3 items of high-risk node and 2 items of higher-risk nodes are determined. The application results show that the system risk of the project is 44.67%, which is the high risk level. It can reflect the actual safety conditions of the project in a more comprehensive way.

Research limitations/implications

This paper determined the level of node risk only using the node degree and risk matrix. In future research, more node topological parameters that could be applied to node risk, such as clustering coefficients, mesoscopic numbers, centrality, PageRank, etc.

Practical implications

This article can quantitatively assess the risk accumulation of building construction. It would help safety managers could clarify the system risk status. Moreover, it also contributes to reveal the correspondence between risk accumulation and accident evolution.

Originality/value

This study comprehensively considers the likelihood, consequences and correlation to assess node risk. Based on this, single-node risk and system risk assessment methods of building construction systems were proposed. It provided a promising method and idea for the risk accumulation assessment method of building construction. Moreover, evolution process of node risk is explained from the perspective of risk accumulation.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 31 October 2023

Hong Zhou, Binwei Gao, Shilong Tang, Bing Li and Shuyu Wang

The number of construction dispute cases has maintained a high growth trend in recent years. The effective exploration and management of construction contract risk can directly…

Abstract

Purpose

The number of construction dispute cases has maintained a high growth trend in recent years. The effective exploration and management of construction contract risk can directly promote the overall performance of the project life cycle. The miss of clauses may result in a failure to match with standard contracts. If the contract, modified by the owner, omits key clauses, potential disputes may lead to contractors paying substantial compensation. Therefore, the identification of construction project contract missing clauses has heavily relied on the manual review technique, which is inefficient and highly restricted by personnel experience. The existing intelligent means only work for the contract query and storage. It is urgent to raise the level of intelligence for contract clause management. Therefore, this paper aims to propose an intelligent method to detect construction project contract missing clauses based on Natural Language Processing (NLP) and deep learning technology.

Design/methodology/approach

A complete classification scheme of contract clauses is designed based on NLP. First, construction contract texts are pre-processed and converted from unstructured natural language into structured digital vector form. Following the initial categorization, a multi-label classification of long text construction contract clauses is designed to preliminary identify whether the clause labels are missing. After the multi-label clause missing detection, the authors implement a clause similarity algorithm by creatively integrating the image detection thought, MatchPyramid model, with BERT to identify missing substantial content in the contract clauses.

Findings

1,322 construction project contracts were tested. Results showed that the accuracy of multi-label classification could reach 93%, the accuracy of similarity matching can reach 83%, and the recall rate and F1 mean of both can reach more than 0.7. The experimental results verify the feasibility of intelligently detecting contract risk through the NLP-based method to some extent.

Originality/value

NLP is adept at recognizing textual content and has shown promising results in some contract processing applications. However, the mostly used approaches of its utilization for risk detection in construction contract clauses predominantly are rule-based, which encounter challenges when handling intricate and lengthy engineering contracts. This paper introduces an NLP technique based on deep learning which reduces manual intervention and can autonomously identify and tag types of contractual deficiencies, aligning with the evolving complexities anticipated in future construction contracts. Moreover, this method achieves the recognition of extended contract clause texts. Ultimately, this approach boasts versatility; users simply need to adjust parameters such as segmentation based on language categories to detect omissions in contract clauses of diverse languages.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 28 December 2023

Na Xu, Yanxiang Liang, Chaoran Guo, Bo Meng, Xueqing Zhou, Yuting Hu and Bo Zhang

Safety management plays an important part in coal mine construction. Due to complex data, the implementation of the construction safety knowledge scattered in standards poses a…

Abstract

Purpose

Safety management plays an important part in coal mine construction. Due to complex data, the implementation of the construction safety knowledge scattered in standards poses a challenge. This paper aims to develop a knowledge extraction model to automatically and efficiently extract domain knowledge from unstructured texts.

Design/methodology/approach

Bidirectional encoder representations from transformers (BERT)-bidirectional long short-term memory (BiLSTM)-conditional random field (CRF) method based on a pre-training language model was applied to carry out knowledge entity recognition in the field of coal mine construction safety in this paper. Firstly, 80 safety standards for coal mine construction were collected, sorted out and marked as a descriptive corpus. Then, the BERT pre-training language model was used to obtain dynamic word vectors. Finally, the BiLSTM-CRF model concluded the entity’s optimal tag sequence.

Findings

Accordingly, 11,933 entities and 2,051 relationships in the standard specifications texts of this paper were identified and a language model suitable for coal mine construction safety management was proposed. The experiments showed that F1 values were all above 60% in nine types of entities such as security management. F1 value of this model was more than 60% for entity extraction. The model identified and extracted entities more accurately than conventional methods.

Originality/value

This work completed the domain knowledge query and built a Q&A platform via entities and relationships identified by the standard specifications suitable for coal mines. This paper proposed a systematic framework for texts in coal mine construction safety to improve efficiency and accuracy of domain-specific entity extraction. In addition, the pretraining language model was also introduced into the coal mine construction safety to realize dynamic entity recognition, which provides technical support and theoretical reference for the optimization of safety management platforms.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 12 May 2023

Hongliang Yu, Zhen Peng, Zirui He and Chun Huang

The purpose of this paper is to establish a maturity evaluation model for the application of construction steel structure welding robotics suitable for the actual situation and…

109

Abstract

Purpose

The purpose of this paper is to establish a maturity evaluation model for the application of construction steel structure welding robotics suitable for the actual situation and specific characteristics of engineering projects in China and then to assess the maturity level of the technology in the application of domestic engineering projects more scientifically.

Design/methodology/approach

The research follows a qualitative and quantitative analysis method. In the first stage, the structure of the maturity model is constructed and the evaluation index system is designed by using the ideas of the capability maturity model and WSR methodology for reference. In the second stage, the design of the evaluation process and the selection of evaluation methods (analytic hierarchy process method, multi-level gray comprehensive evaluation method). In the third stage, the data are collected and organized (preparation of questionnaires, distribution of questionnaires, questionnaire collection). In the fourth stage, the established maturity evaluation model is used to analyze the data.

Findings

The evaluation model established by using multi-level gray theory can effectively transform various complex indicators into an intuitive maturity level or score status. The conclusion shows that the application maturity of building steel structure welding robot technology in this project is at the development level as a whole. The maturity levels of “WuLi – ShiLi – RenLi” are respectively: development level, development level, between starting level and development level. Comparison of maturity evaluation values of five important factors (from high to low): environmental factors, technical factors, management factors, benefit factors, personnel and group factors.

Originality/value

In this paper, based on the existing research related to construction steel structure welding robot technology, a quantitative and holistic evaluation of the application of construction steel structure welding robot technology in domestic engineering projects is conducted for the first time from a project perspective by designing a maturity evaluation index system and establishing a maturity evaluation model. This research will help the project team to evaluate the application level (maturity) of the welding robot in the actual project, identify the shortcomings and defects of the application of this technology, then improve the weak links pertinently, and finally realize the gradual improvement of the overall application level of welding robot technology for building steel structure.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 29 September 2023

Li Wang, Yanhong Lv, Tao Wang, Shuting Wan and Yanling Ye

The purpose of this research is to address the existing gap in the study of construction and demolition waste (C&DW) by focusing on its impact on human health throughout the…

Abstract

Purpose

The purpose of this research is to address the existing gap in the study of construction and demolition waste (C&DW) by focusing on its impact on human health throughout the entire life cycle. And this research provides a comprehensive assessment model that incorporates the release of gaseous pollutants and particulate matter during the whole life cycle of C&DW, thereby contributing to a more holistic understanding of its impact on human health.

Design/methodology/approach

The research was conducted in two stages. Firstly, the quantitative model framework of pollutants emitted by C&DW was established. Three types of pollutants were considered, namely nitrogen dioxide (NO2), sulfur dioxide (SO2) and inhalable particulate matter (PM10). Second, disability-adjusted life year (DALY) and willingness to pay (WTP) assessments were used to provide a monetary quantified health impact for pollutants released by C&DW.

Findings

The results show that the WTP value of PM10 is the highest among all pollutants and 8.68E+07 dollars/a, while the WTP value in the disposal stage accounts for the largest proportion compared to the generation and transportation stage. These findings emphasize the importance of PM10 and C&DW treatment stage for pollutant treatment.

Originality/value

The results of this study are of great significance for the management department to optimize the construction management scheme to reduce the total amount of pollutants produced by C&DW and its harm to human health. Meanwhile, this study fills the gap in existing research on the impact assessment of C&DW on human health throughout the whole life cycle, and provides reference and basis for future research and policy formulation.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 21 November 2023

Tianyao Ping, Wei Pan and Zhiqian Zhang

Modular construction is an innovative method that enhances the performance of building construction projects. However, the performance of steel modular construction has not been…

Abstract

Purpose

Modular construction is an innovative method that enhances the performance of building construction projects. However, the performance of steel modular construction has not been systematically understood, and the existing measurement methods exhibit limitations in effectively addressing the features of steel modular building construction. Therefore, this study aims to develop a new performance measurement framework for systematically examining the performance of steel modular construction in building projects.

Design/methodology/approach

This study was conducted through a mixed-method research design that combines a comprehensive review of the state-of-the-art practices of construction performance measurement and a case study with a 17-story steel modular apartment building project in Hong Kong. The case project was measured with data collected from the project teams and other reliable channels, and the measurement practices and findings were referenced to establish a systematic performance measurement framework for steel modular construction.

Findings

Considering steel modular construction as a complex socio-technical system, a systematic performance measurement framework was developed, which considers the features of steel modular construction, focuses on the construction stage, incorporates the views of various stakeholders, integrates generic and specific key performance indicators and provides a benchmarking process. Multifaceted benefits of adopting steel modular construction were demonstrated with case study, including improved economic efficiency (e.g. nearly 10% cost savings), improved environmental friendliness (e.g. approximately 90% waste reduction) and enhanced social welfare (e.g. over 60% delivery trips reduction).

Originality/value

This paper extends the existing performance measurement methods with a new framework proposed and offers experience for future steel modular construction. The measured performance of the case project also contributes in-depth understanding on steel modular construction with benefits demonstrated. The study is expected to accelerate an effective uptake of steel modular construction in building projects.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 12 September 2023

Wenjing Wu, Caifeng Wen, Qi Yuan, Qiulan Chen and Yunzhong Cao

Learning from safety accidents and sharing safety knowledge has become an important part of accident prevention and improving construction safety management. Considering the…

Abstract

Purpose

Learning from safety accidents and sharing safety knowledge has become an important part of accident prevention and improving construction safety management. Considering the difficulty of reusing unstructured data in the construction industry, the knowledge in it is difficult to be used directly for safety analysis. The purpose of this paper is to explore the construction of construction safety knowledge representation model and safety accident graph through deep learning methods, extract construction safety knowledge entities through BERT-BiLSTM-CRF model and propose a data management model of data–knowledge–services.

Design/methodology/approach

The ontology model of knowledge representation of construction safety accidents is constructed by integrating entity relation and logic evolution. Then, the database of safety incidents in the architecture, engineering and construction (AEC) industry is established based on the collected construction safety incident reports and related dispute cases. The construction method of construction safety accident knowledge graph is studied, and the precision of BERT-BiLSTM-CRF algorithm in information extraction is verified through comparative experiments. Finally, a safety accident report is used as an example to construct the AEC domain construction safety accident knowledge graph (AEC-KG), which provides visual query knowledge service and verifies the operability of knowledge management.

Findings

The experimental results show that the combined BERT-BiLSTM-CRF algorithm has a precision of 84.52%, a recall of 92.35%, and an F1 value of 88.26% in named entity recognition from the AEC domain database. The construction safety knowledge representation model and safety incident knowledge graph realize knowledge visualization.

Originality/value

The proposed framework provides a new knowledge management approach to improve the safety management of practitioners and also enriches the application scenarios of knowledge graph. On the one hand, it innovatively proposes a data application method and knowledge management method of safety accident report that integrates entity relationship and matter evolution logic. On the other hand, the legal adjudication dimension is innovatively added to the knowledge graph in the construction safety field as the basis for the postincident disposal measures of safety accidents, which provides reference for safety managers' decision-making in all aspects.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 7 April 2023

Ali M. Saad, Sambo Lyson Zulu and Mohammed Dulaimi

The staggering demand for construction projects to meet a spectrum of public needs is projected to outstrip the industry’s supply capability. The modern methods of construction…

Abstract

Purpose

The staggering demand for construction projects to meet a spectrum of public needs is projected to outstrip the industry’s supply capability. The modern methods of construction (MMC) offers wider control due to shifting key construction processes offsite. Public clients play a significant role due to their purchasing power; however, their uptake of MMC is low, despite the benefits. The purpose of this study is to reveal the reasoning behind such low adoption. The research gap, herewith, is our lack of understanding of the influence of public clients perceptions on their adoption’s indecision.

Design/methodology/approach

This study used a qualitative approach to investigate the motives behind the public sector’s low MMC adoption. Semi-structured interviews with 14 of the United Kingdom’s public sector decision-makers, industry leaders and experts have been conducted. Perspectives were argued against the diffusion of innovation (DOI) theory.

Findings

Overall, the innovation’s attributes informed the authors of the positive perceptions from the public sector, demonstrating that the low adoption of MMC is not linked to any embedded issues with the innovation itself rather being predominantly related to the dynamics between supply and demand. The former (supply), reflected a failure in communicating confidence, and the latter (demand), attained characteristics that are limiting wider uptake.

Originality/value

To the best of the authors’ knowledge, this is the first study to apply the DOI theory to reveal the relationship between UK public clients’ perceptions and their decision-making. Moreover, this paper addresses the scant attention to the use of theories to explain the flow of innovations in the construction context.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

1 – 10 of over 4000