Search results

1 – 10 of over 16000
Article
Publication date: 26 October 2020

Jie Zhu, Jing Yang, Shaoning Di, Jiazhu Zheng and Leying Zhang

The spatial and non-spatial attributes are the two important characteristics of a spatial point, which belong to the two different attribute domains in many Geographic Information…

Abstract

Purpose

The spatial and non-spatial attributes are the two important characteristics of a spatial point, which belong to the two different attribute domains in many Geographic Information Systems applications. The dual clustering algorithms take into account both spatial and non-spatial attributes, where a cluster has not only high proximity in spatial domain but also high similarity in non-spatial domain. In a geographical dataset, traditional dual spatial clustering algorithms discover homogeneous spatially adjacent clusters suffering from the between-cluster inhomogeneity where those spatial points are described in non-spatial domain. To overcome this limitation, a novel dual-domain clustering algorithm (DDCA) is proposed by considering both spatial proximity and attribute similarity with the presence of inhomogeneity.

Design/methodology/approach

In this algorithm, Delaunay triangulation with edge length constraints is first employed to construct spatial proximity relationships amongst objects. Then, a clustering strategy based on statistical change detection is designed to obtain clusters with similar attributes.

Findings

The effectiveness and practicability of the proposed algorithm are illustrated by experiments on both simulated datasets and real spatial events. It is found that the proposed algorithm can adaptively and accurately detect clusters with spatial proximity and similar non-spatial attributes under the consideration of inhomogeneity.

Originality/value

Traditional dual spatial clustering algorithms discover homogeneous spatially adjacent clusters suffering from the between-cluster inhomogeneity where those spatial points are described in non-spatial domain. The research here is a contribution to developing a dual spatial clustering method considering both spatial proximity and attribute similarity with the presence of inhomogeneity. The detection of these clusters is useful to understand the local patterns of geographical phenomena, such as land use classification, spatial patterns research and big geo-data analysis.

Details

Data Technologies and Applications, vol. 54 no. 5
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 1 February 1990

Alphose Zingoni and Milija N. Pavlović

The accuracy of the bending disturbances in (axisymmetrically loaded) spherical shells is computed by means of the widely used simplified method known as Geckeler's approximation…

Abstract

The accuracy of the bending disturbances in (axisymmetrically loaded) spherical shells is computed by means of the widely used simplified method known as Geckeler's approximation (often employed as a benchmark for numerical models). The study is based on a comparison between Geckeler's approach and a related, but ‘superior’ approximation which, for practical purposes, may be considered to be exact. Conclusions are drawn from the results of a parametric investigation that encompasses various loading types, boundary conditions and shell geometries (i.e. springing angles and slenderness ratios).

Details

Engineering Computations, vol. 7 no. 2
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 19 June 2017

Ta Na, Nobuo Funabiki, Khin Khin Zaw, Nobuya Ishihara, Shinpei Matsumoto and Wen-Chung Kao

To advance Java programming educations, the authors have developed a Java Programming Learning Assistant System (JPLAS) as a web application system. JPLAS provides fill-in-blank…

Abstract

Purpose

To advance Java programming educations, the authors have developed a Java Programming Learning Assistant System (JPLAS) as a web application system. JPLAS provides fill-in-blank problems for novices to study the grammar and basic programming skills through code reading.

Design/methodology/approach

To select the blank elements with grammatically correct and unique answers from a given Java code, the authors have proposed the graph-based blank element selection algorithm. Then, the code for this problem should be highly readable to encourage novice students to study it. Because code readability can be improved by proper names for identifiers, the authors have also proposed the naming rule testing algorithm to identify codes with correct names.

Findings

In this paper, the authors present a fill-in-blank problem workbook by collecting suitable Java codes from textbooks and Web sites and applying these algorithms with several extensions. The workbook consists of 16 categories with a considerable number of problems that follow the conventional learning order of Java programming.

Originality/value

The proper set of ready-made fill-in-blank problems is effective in enhancing the usability of JPLAS both for teachers and students. For the preliminary evaluation, the authors assign a few problems to students. In coming semesters, the authors will use this workbook in the course to verify the adequacy of the proposal for novices.

Details

International Journal of Web Information Systems, vol. 13 no. 2
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 1 January 1992

Stuart Howe

Considers the attributes of glass in fire protection. Brieflyreviews the three main types of fire resisting glasses; wired glass,heat treated fire glass and insulating glass…

Abstract

Considers the attributes of glass in fire protection. Briefly reviews the three main types of fire resisting glasses; wired glass, heat treated fire glass and insulating glass. Suggests that fire‐resistance is a function of the glazing system used, incorporating glass, design and framing. Concludes with the benefits of steel‐based glazing.

Details

Structural Survey, vol. 10 no. 1
Type: Research Article
ISSN: 0263-080X

Keywords

Article
Publication date: 1 May 2006

Jian Hou, Naiming Qi and Hong Zhang

To present a stereo matching algorithm which satisfies the need of visual navigation on outdoor natural terrain for lunar rover or other mobile robots.

Abstract

Purpose

To present a stereo matching algorithm which satisfies the need of visual navigation on outdoor natural terrain for lunar rover or other mobile robots.

Design/methodology/approach

A feature‐assisted matching algorithm is presented to generate dense and accurate disparity map of natural terrain. Multi‐feature matching strategy produces reliable matching results for edge points. Disparity monotony constraint is derived and other geometrical constraints are introduced. With these constraints the edge‐matching results are used to limit the search region in area‐matching. As a result the algorithm produces dense disparity maps with fairly high accuracy and demonstrates advantages over straightforward area‐matching algorithm in improving matching accuracy.

Findings

With the help of several constraints, the feature‐assisted matching algorithm performs well in the matching of stereo image pairs of natural terrain.

Research limitations/implications

The algorithm focus on improving the accuracy of stereo image pairs matching of natural terrain and computation complexity is not an important designing factor. Only with the assistance of special hardware or other technique can the algorithm be used for real‐time navigation.

Practical implications

The algorithm is able to produce dense disparity map of natural terrain with rather high accuracy and can be used for the navigation of lunar rover or other outdoor mobile robots.

Originality/value

The paper provides a new approach to produce accurate and dense disparity map of natural terrain.

Details

Aircraft Engineering and Aerospace Technology, vol. 78 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 2 March 2015

Ruding Lou, Jean-Philippe Pernot, Franca Giannini, Philippe Veron and Bianca Falcidieno

The purpose of this paper is to set up a new framework to enable direct modifications of volume meshes enriched with semantic information associated to multiple partitions. An…

Abstract

Purpose

The purpose of this paper is to set up a new framework to enable direct modifications of volume meshes enriched with semantic information associated to multiple partitions. An instance of filleting operator is prototyped under this framework and presented in the paper.

Design/methodology/approach

In this paper, a generic mesh modification operator has been designed and a new instance of this operator for filleting finite element (FE) sharp edges of tetrahedral multi-partitioned meshes is also pro-posed. The filleting operator works in two main steps. The outer skin of the tetrahedral mesh is first deformed to round user-specified sharp edges while satisfying constraints relative to the shape of the so-called Virtual Group Boundaries. Then, in the filleting area, the positions of the inner nodes are relaxed to improve the aspect ratio of the mesh elements.

Findings

The classical mainstream methodology for product behaviour optimization involves the repetition of four steps: CAD modelling, meshing of CAD models, enrichment of models with FE simulation semantics and FEA. This paper highlights how this methodology could be simplified by two steps: simulation model modification and FEA. The authors set up a new framework to enable direct modifications of volume meshes enriched with semantic information associated to multiple partitions and the corresponding fillet operator is devised.

Research limitations/implications

The proposed framework shows only a paradigm of direct modifications of semantic enriched meshes. It could be further more improved by adding or changing the modules inside. The fillet operator does not take into account the exact radius imposed by user. With this proposed fillet operator the mesh element density may not be enough high to obtain wished smoothness.

Originality/value

This paper fulfils an identified industry need to speed up the product behaviour analysis process by directly modifying the simulation semantic enriched meshes.

Details

Engineering Computations, vol. 32 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 May 2012

Pavel Hutar, Michal Zouhar, Eva Nezbedova, Jiri Sadilek, Jan Zidek, Lubos Nahlik and Zdenek Knesl

From the practical point of view, most relevant damage to high density polyethylene (HDPE) structures is caused by slow crack growth. Therefore, detailed information about this…

Abstract

Purpose

From the practical point of view, most relevant damage to high density polyethylene (HDPE) structures is caused by slow crack growth. Therefore, detailed information about this type of damage is necessary. Experimental results transfer from specimens to real structure can be influenced by structure geometry (constraint). Therefore, the purpose of this paper is to investigate and discuss the effect of the constraint and relation between crack mouth opening displacement (CMOD) and crack length.

Design/methodology/approach

The constraint effect is mainly effect of the structure geometry and can be quantified by T‐stress. Two different test specimens with different constraint level (T‐stress) were prepared: single edge notched specimen and modified single edge notch (SEN) specimen. The crack mouth opening displacement, crack tip opening displacement and crack length was measured.

Findings

The main conclusions of this work can be summarized as: the slow crack growth rate in HDPE materials corresponds to velocity of CMOD; the influence of the presented specimen geometry on slow crack growth rate can be considered as negligible; and for transfer of the experimental results from specimens to real structure the influence of the structure geometry (constraint) is not critical.

Originality/value

Experimental results obtained from different specimens with different constraint level are rare and can lead to better data transfer from experimental specimens to the real structures.

Article
Publication date: 1 January 2006

R. Balamurugan, C.V. Ramakrishnan and N. Swaminathan

The structural design problem can be viewed as an iterative design loop with each iteration involving two stages for topology and shape designs with genetic algorithm (GA) as the…

Abstract

Purpose

The structural design problem can be viewed as an iterative design loop with each iteration involving two stages for topology and shape designs with genetic algorithm (GA) as the optimization tool for both.

Design/methodology/approach

The topology optimization problem, which is ill posed, is regularized using a constraint on perimeter and solved using GA. The problem is formulated as one of compliance minimization subject to volume constraint for the single loading case. A dual formulation of this has been used for the multiple loading cases resulting in as many behavioral constraints as there are loading cases. The tentative topology given by the topology optimization module is taken and the domain boundary is approximated using straight lines, B‐splines and cubic spline curves and design variables are selected among the boundary defining points. Optimum boundary shape of the problem has been obtained using GA in two different ways: without stress constraints; and with stress constraints.

Findings

The proposed two stage strategy has been tested on benchmark structural optimization problems and its performance is found to be extremely good.

Practical implications

The strategy appears to be eminently suitable for implementation in a general purpose FE software as an add‐on module for structural design optimization.

Originality/value

It has been observed that the integrated topology and shape design method is robust and easy to implement in comparison with other techniques. The computing time requirements for the GA does not appear daunting in the present scenario of high performance parallel computing and improved GA techniques.

Details

Engineering Computations, vol. 23 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 2000

P.Di Barba

Introduces papers from this area of expertise from the ISEF 1999 Proceedings. States the goal herein is one of identifying devices or systems able to provide prescribed…

Abstract

Introduces papers from this area of expertise from the ISEF 1999 Proceedings. States the goal herein is one of identifying devices or systems able to provide prescribed performance. Notes that 18 papers from the Symposium are grouped in the area of automated optimal design. Describes the main challenges that condition computational electromagnetism’s future development. Concludes by itemizing the range of applications from small activators to optimization of induction heating systems in this third chapter.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 July 2019

Eduardo Sepulveda Palacios and Howard Smith

The purpose of this paper is to characterise the effects of mission and performance parameters on the design space of low observable subsonic unmanned combat aerial vehicles…

Abstract

Purpose

The purpose of this paper is to characterise the effects of mission and performance parameters on the design space of low observable subsonic unmanned combat aerial vehicles (UCAVs) operating in typical Hi-Lo-Hi ground strike missions.

Design/methodology/approach

Conceptual design methodologies appropriate to low observable, tailless UCAVs have been integrated into a multidisciplinary aircraft design environment, GENUS, developed at Cranfield University’s aircraft design group. A basic Hi-Lo-Hi mission is designed and a baseline configuration is established through the GENUS framework. Subsequently, an evolutionary optimiser and a robust gradient-based optimiser are used to obtain convergent design solutions for various leading edge sweep angles, mission ranges, cruise Mach numbers and other operational constraints.

Findings

The results indicate that performance constraints, specifically in the form of specific excess power (SEP), have a large influence on the overall sizing of subsonic tailless UCAVs. This requirement drives the engine sizing, which represents a considerable proportion of the empty and gross mass of the vehicle. Cruise Mach number studies show that no significant advantages exist for operating at low speeds while maintaining performance requirements consistent with combat missions. There is a drastic increase in the vehicle’s mass and thrust requirements for flight speeds above Mach 0.8, with low sweep configurations showing a more pronounced effect. Increases in the range are not overly dependent on the leading edge sweep angle. Top-level radar cross section (RCS) results also favour configurations with higher leading edge sweep angles, especially from the nose-on aspect. Finally, research and development costs are shown to be directly linked to engine size.

Originality/value

This research shows the use of an integrated aircraft design environment that incorporates aerodynamics, performance, packaging and low observability aspects into the optimisation loop. Through this methodology, this study supports the efforts towards characterising and establishing alternate visions of the future of aerial warfare through the use of low cost, survivable unmanned platforms in network-centric cooperative tasks.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of over 16000