Search results

1 – 10 of 980

Abstract

Details

Understanding Intercultural Interaction: An Analysis of Key Concepts, 2nd Edition
Type: Book
ISBN: 978-1-83753-438-8

Article
Publication date: 19 December 2023

Joshua Ofoeda, Richard Boateng and John Effah

Digital platforms increase their function and scope by leveraging boundary resources and complementary add-on products from third-party developers to interact with external…

Abstract

Purpose

Digital platforms increase their function and scope by leveraging boundary resources and complementary add-on products from third-party developers to interact with external entities and producers. Application Programming Interfaces (APIs) are essential boundary resources developers use to connect applications, systems and platforms. This notwithstanding, previous API studies tend to focus more on the technical dimensions, with little on the social and cultural contexts underpinning API innovations. This study relies on the new (neo) institutional theory (focusing on regulative, normative and cultural-cognitive pillars) as an analytical lens to understand the institutional forces that affect API integration among digital firms.

Design/methodology/approach

The study adopts a qualitative case study methodology and relies on phone calls and a semi-structured in-depth interview approach of a Ghanaian digital music platform to uncover the institutional forces affecting API integration.

Findings

The findings reveal that regulative institutions such as excessive tax regimes mostly constrained API development and integration initiatives. However, other regulative institutions like the government digitalization agenda enabled API integration. Normative institutions, such as the growing use of e-payment options, enabled API integration in digital music platforms. Cultural-cognitive institutions like employee ego constrained the API integration process in music digital platforms.

Originality/value

This study primarily contributes to deepening understanding of the relevant literature by exploring the institutional forces that affect API integration among digital firms in a developing economy. The study also uncovered a new form of an institution known as motivational institution as an enabler for API development and integration in digital music platforms.

Details

Information Technology & People, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0959-3845

Keywords

Article
Publication date: 9 April 2024

Nichapa Phraknoi, Mark Stevenson and Meng Jia

The purpose of this study is to define and investigate the governance requirements of supply chain finance (SCF).

Abstract

Purpose

The purpose of this study is to define and investigate the governance requirements of supply chain finance (SCF).

Design/methodology/approach

A qualitative analysis of 849 news articles published in UK newspapers (2000–2022) using the Gioia method.

Findings

SCF governance relies on developing capacities for reflexive scrutiny at two stages: (1) prior to entering into an SCF relationship and (2) during its operation. Based on the notion of SCF as a complex adaptive system, we theorise SCF governance requirements as a dual-layered semipermeable boundary. The semipermeability of the two layers allows for a dynamic exchange between the SCF system and its environment. The first layer is the capacity to selectively enable or control the entry and access of certain actors and practices into the SCF system. The second layer is a capacity for ongoing scrutiny of the SCF operation and its development. Further, we identify five aspects of governance to be enabled, i.e. enhancing adaptability, building confidence, improving efficiency, advancing technology and promoting transparency; and four aspects to be controlled, i.e. preventing abuse of power, curbing fraud risk, constraining operational risk and restricting risky extensions to SCF practices.

Practical implications

Our dynamic framework can guide supply chain (SC) members in making decisions about whether to participate, or continue to operate, in an SCF relationship. Moreover, the findings have implications for policymakers and authorities who oversee entry/access and the involvement of SCF providers, particularly, fintech firms.

Originality/value

The study contributes to both the SC and governance literature by providing a systematic analysis of what SCF governance has to accomplish. Our novel contribution lies in its analysis of SCF governance based on a complex adaptive system approach, which expands the existing literature where SCF is described in rather static terms. More specifically, it suggests a need for a dynamic duality of SCF governance through the semipermeable boundary that selectively enables and controls certain SCF actors and practices.

Details

International Journal of Physical Distribution & Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0960-0035

Keywords

Article
Publication date: 10 January 2024

Tingwei Gu, Shengjun Yuan, Lin Gu, Xiaodong Sun, Yanping Zeng and Lu Wang

This paper aims to propose an effective dynamic calibration and compensation method to solve the problem that the statically calibrated force sensor would produce large dynamic…

Abstract

Purpose

This paper aims to propose an effective dynamic calibration and compensation method to solve the problem that the statically calibrated force sensor would produce large dynamic errors when measuring dynamic signals.

Design/methodology/approach

The dynamic characteristics of the force sensor are analyzed by modal analysis and negative step dynamic force calibration test, and the dynamic mathematical model of the force sensor is identified based on a generalized least squares method with a special whitening filter. Then, a compensation unit is constructed to compensate the dynamic characteristics of the force measurement system, and the compensation effect is verified based on the step and knock excitation signals.

Findings

The dynamic characteristics of the force sensor obtained by modal analysis and dynamic calibration test are consistent, and the time and frequency domain characteristics of the identified dynamic mathematical model agree well with the actual measurement results. After dynamic compensation, the dynamic characteristics of the force sensor in the frequency domain are obviously improved, and the effective operating frequency band is widened from 500 Hz to 1,560 Hz. In addition, in the time domain, the rise time of the step response signal is reduced from 0.29 ms to 0.17 ms, and the overshoot decreases from 26.6% to 9.8%.

Originality/value

An effective dynamic calibration and compensation method is proposed in this paper, which can be used to improve the dynamic performance of the strain-gauge-type force sensor and reduce the dynamic measurement error of the force measurement system.

Details

Sensor Review, vol. 44 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 15 February 2024

Chengguo Liu, Junyang Li, Zeyu Li and Xiutao Chen

The study aims to equip robots with the ability to precisely maintain interaction forces, which is crucial for tasks such as polishing in highly dynamic environments with unknown…

Abstract

Purpose

The study aims to equip robots with the ability to precisely maintain interaction forces, which is crucial for tasks such as polishing in highly dynamic environments with unknown and varying stiffness and geometry, including those found in airplane wings or thin, soft materials. The purpose of this study is to develop a novel adaptive force-tracking admittance control scheme aimed at achieving a faster response rate with higher tracking accuracy for robot force control.

Design/methodology/approach

In the proposed method, the traditional admittance model is improved by introducing a pre-proportional-derivative controller to accelerate parameter convergence. Subsequently, the authors design an adaptive law based on fuzzy logic systems (FLS) to compensate for uncertainties in the unknown environment. Stability conditions are established for the proposed method through Lyapunov analysis, which ensures the force tracking accuracy and the stability of the coupled system consisting of the robot and the interaction environment. Furthermore, the effectiveness and robustness of the proposed control algorithm are demonstrated by simulation and experiment.

Findings

A variety of unstructured simulations and experimental scenarios are designed to validate the effectiveness of the proposed algorithm in force control. The outcomes demonstrate that this control strategy excels in providing fast response, precise tracking accuracy and robust performance.

Practical implications

In real-world applications spanning industrial, service and medical fields where accurate force control by robots is essential, the proposed method stands out as both practical and straightforward, delivering consistently satisfactory performance across various scenarios.

Originality/value

This research introduces a novel adaptive force-tracking admittance controller based on FLS and validated through both simulations and experiments. The proposed controller demonstrates exceptional performance in force control within environments characterized by unknown and varying.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 22 March 2024

Peter E. Johansson, Jessica Bruch, Koteshwar Chirumalla, Christer Osterman and Lina Stålberg

The purpose of this paper is to advance the understanding of paradoxes, underlying tensions and potential management strategies when integrating digital technologies into existing…

Abstract

Purpose

The purpose of this paper is to advance the understanding of paradoxes, underlying tensions and potential management strategies when integrating digital technologies into existing lean-based production systems (LPSs), with the aim of achieving synergies and fostering the development of production systems.

Design/methodology/approach

This study adopts a collaborative management research (CMR) approach to identify patterns of organisational tensions and paradoxes and explore management strategies to overcome them. The data were collected through interviews and focus group interviews with experts on lean and/or digital technologies from the companies, from documents and from workshops with the in-case researchers.

Findings

The findings of this paper provide insights into the salient organisational paradoxes embraced in the integration of digital technologies in LPS by identifying different aspects of the performing, organising, learning and belonging paradoxes. Furthermore, the findings demonstrate the intricacies and relatedness between different paradoxes and their resolutions, and more specifically, how a resolution strategy adopted to manage one paradox might unintentionally generate new tensions. This, in turn, calls for either re-contextualising actions to counteract the drift or the adoption of new resolution strategies.

Originality/value

This paper adds perspective to operations management (OM) research through the use of paradox theory, and we (1) provide a fine-grained perspective on why integration sometimes “fails” and label the forces of internal drift as mechanisms of imbalances and (2) provide detailed insights into how different management and resolution strategies are adopted, especially by identifying re-contextualising actions as a key to rebalancing organisational paradoxes in favour of the integration of digital technologies in LPSs.

Details

International Journal of Operations & Production Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0144-3577

Keywords

Open Access
Article
Publication date: 20 March 2024

Guijian Xiao, Tangming Zhang, Yi He, Zihan Zheng and Jingzhe Wang

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding…

Abstract

Purpose

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding and polishing of additive titanium alloy blades to ensure the surface integrity and machining accuracy of the blades.

Design/methodology/approach

At present, robot grinding and polishing are mainstream processing methods in blade automatic processing. This review systematically summarizes the processing characteristics and processing methods of additive manufacturing (AM) titanium alloy blades. On the one hand, the unique manufacturing process and thermal effect of AM have created the unique processing characteristics of additive titanium alloy blades. On the other hand, the robot grinding and polishing process needs to incorporate the material removal model into the traditional processing flow according to the processing characteristics of the additive titanium alloy.

Findings

Robot belt grinding can solve the processing problem of additive titanium alloy blades. The complex surface of the blade generates a robot grinding trajectory through trajectory planning. The trajectory planning of the robot profoundly affects the machining accuracy and surface quality of the blade. Subsequent research is needed to solve the problems of high machining accuracy of blade profiles, complex surface material removal models and uneven distribution of blade machining allowance. In the process parameters of the robot, the grinding parameters, trajectory planning and error compensation affect the surface quality of the blade through the material removal method, grinding force and grinding temperature. The machining accuracy of the blade surface is affected by robot vibration and stiffness.

Originality/value

This review systematically summarizes the processing characteristics and processing methods of aviation titanium alloy blades manufactured by AM. Combined with the material properties of additive titanium alloy, it provides a new idea for robot grinding and polishing of aviation titanium alloy blades manufactured by AM.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 5 April 2024

Heping Liu, Jinxin Lu, Fusheng Zhu and Ani Luo

This study proposes a tensegrity-based traction structure with D-bar dual cable units. It is used to connect the airship and the ground to stabilize the airship.

Abstract

Purpose

This study proposes a tensegrity-based traction structure with D-bar dual cable units. It is used to connect the airship and the ground to stabilize the airship.

Design/methodology/approach

The mathematical models and dynamic models of the D-bar dual cable (hereafter referred to as DD cable) unit of the tensegrity-based traction structure are established. Based on the minimum mass method, the mass of the DD cable unit in the critical state (cable member is yielding, or bar member is buckling or yielding) is analyzed. Then, the tensile strength of the DD cable unit and single cable unit under the same condition is compared using the control variate method. Finally, based on ANSYS dynamic simulation, the stability of the two structures under the same external force disturbance was tested.

Findings

Expressions for the minimum mass of the DD cable unit under different failure conditions are solved. Dynamic simulation results show that the capacity of resisting disturbance of the DD cable unit is much better than that of the single cable unit under the same wind speed. So, we find a structure more suitable for the fixed connection of an airship.

Originality/value

This study helps to provide theoretical reference and thinking for the practical application of the traction structure with a D-bar dual cable unit.

Details

Engineering Computations, vol. 41 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 9 December 2022

Christoph Endenich, Maik Lachmann, Hanna Schachel and Joanna Zajkowska

This paper aims to analyze the relationship between the use of management control systems (MCSs) and innovativeness in start-ups pursuing product innovation (PI), business model…

Abstract

Purpose

This paper aims to analyze the relationship between the use of management control systems (MCSs) and innovativeness in start-ups pursuing product innovation (PI), business model innovation (BMI) or ambidextrous innovation (both PI and BMI ).

Design/methodology/approach

This paper reports on survey data collected at 143 European start-ups using a structured questionnaire sent to a member of the top management team at each firm.

Findings

The authors find that the control levers and their interdependencies associated with increased innovativeness significantly differ between the different forms of innovation.

Practical implications

The study provides important guidance for entrepreneurs so that they can effectively support their innovation agenda with the MCSs tailored to their needs.

Originality/value

This research contributes to a growing literature that shows the positive role of MCSs in innovative and entrepreneurial processes. It adds to the understanding of the multifaceted nature of innovation and the crucial importance of BMI and ambidextrous innovation for the success of start-ups.

Details

Journal of Accounting & Organizational Change, vol. 19 no. 5
Type: Research Article
ISSN: 1832-5912

Keywords

Article
Publication date: 6 October 2023

Fugang Zhai, Shengnan Li and Yangtao Xing

This paper aims to study the motion trajectory of the oil seal for shaft in eccentric state and derive equation of lip motion trajectory.

Abstract

Purpose

This paper aims to study the motion trajectory of the oil seal for shaft in eccentric state and derive equation of lip motion trajectory.

Design/methodology/approach

This paper analyzes the force during the motion of the eccentric lip by considering the material viscoelasticity, and a cam-plate mechanism is established as an equivalent model for the motion between the shaft and the lip; according to this, the equation of lip motion trajectory is derived.

Findings

The trajectory of the lip lags that of the shaft in the eccentric state because the viscoelasticity-affected lip recovery velocity is lower than the shaft recovery speed. The lip trajectory enters the lag phase earlier and the lag phase’s duration is longer with the increase of the eccentricity and rotational speed, because the deviation of the recovery velocities between the lip and the shaft will be exacerbated.

Originality/value

Innovatively, by considering the viscoelasticity of the material, the cam-plate mechanism is used to equivalent the motion of the shaft-lip to derive the equation for the radial motion trajectory of the eccentric lip. The regularity of lip motion is the key to determining the performance of oil seals, and the eccentric lip trajectory research method revealed in this paper provides a research basis for the performance research and optimization of eccentric oil seals.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-06-2023-0161/

Details

Industrial Lubrication and Tribology, vol. 75 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 980