Search results

1 – 10 of 241
Article
Publication date: 31 January 2024

Dangshu Wang, Menghu Chang, Licong Zhao, Yuxuan Yang and Zhimin Guan

This study aims to regarding the application of traditional pulse frequency modulation control full-bridge LLC resonant converters in wide output voltage fields such as on-board…

Abstract

Purpose

This study aims to regarding the application of traditional pulse frequency modulation control full-bridge LLC resonant converters in wide output voltage fields such as on-board chargers, there are issues with wide frequency adjustment ranges and low conversion efficiency.

Design/methodology/approach

To address these issues, this paper proposes a fixed-frequency pulse width modulation (PWM) control strategy for a full-bridge LLC resonant converter, which adjusts the gain by adjusting the duty cycle of the switches. In the full-bridge LLC converter, the two switches of the lower bridge arm are controlled by a fixed-frequency and fixed duty cycle, with their switching frequency equal to the resonant frequency, whereas the two switches of the upper bridge arm are controlled by a fixed-frequency PWM to adjust the output voltage. The operation modes of the converter are analyzed in detail, and a mathematical model of the converter is established. The gain characteristics of the converter under the fixed-frequency PWM control strategy are deeply analyzed, and the conditions for implementing zero-voltage switching (ZVS) soft switching in the converter are also analyzed in detail. The use of fixed-frequency PWM control simplifies the design of resonant parameters, and the fixed-frequency control is conducive to the design of magnetic components.

Findings

According to the fixed-frequency PWM control strategy proposed in this paper, the correctness of the control strategy is verified through simulation and the development and testing of a 500-W experimental prototype. Test results show that the primary side switches of the converter achieve ZVS and the secondary side rectifier diodes achieve zero-current switching, effectively reducing the switching losses of the converter. In addition, the control strategy reduces the reactive circulating current of the converter, and the peak efficiency of the experimental prototype can reach 95.2%.

Originality/value

The feasibility of the fixed-frequency PWM control strategy was verified through experiments, which has significant implications for improving the efficiency of the converter and simplifying the design of resonant parameters and magnetic components in wide output voltage fields such as on-board chargers.

Details

Circuit World, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 23 March 2023

Aditi Sushil Karvekar and Prasad Joshi

The purpose of this paper is to implement a closed loop regulated bidirectional DC to DC converter for an application in the electric power system of more electric aircraft. To…

Abstract

Purpose

The purpose of this paper is to implement a closed loop regulated bidirectional DC to DC converter for an application in the electric power system of more electric aircraft. To provide a consistent power supply to all of the electronic loads in an aircraft at the desired voltage level, good efficiency and desired transient and steady-state response, a smart and affordable DC to DC converter architecture in closed loop mode is being designed and implemented.

Design/methodology/approach

The aircraft electric power system (EPS) uses a bidirectional half-bridge DC to DC converter to facilitate the electric power flow from the primary power source – an AC generator installed on the aircraft engine’s shaft – to the load as well as from the secondary power source – a lithium ion battery – to the load. Rechargeable lithium ion batteries are used because they allow the primary power source to continue recharging them whenever the aircraft engine is running smoothly and because, in the event that the aircraft engine becomes overloaded during takeoff or turbulence, the charged secondary power source can step in and supply the load.

Findings

A novel nonsingular terminal sliding mode voltage controller based on exponential reaching law is used to keep the load voltage constant under any of the aforementioned circumstances, and its performance is contrasted with a tuned PI controller on the basis of their respective transient and steady-state responses. The former gives a faster and better transient and steady-state response as compared to the latter.

Originality/value

This research gives a novel control scheme for incorporating an auxiliary power source, i.e. rechargeable battery, in more electric aircraft EPS. The battery is so implemented that it can get regeneratively charged when primary power supply is capable of handling an additional load, i.e. the battery. The charging and discharging of the battery is carried out in closed loop mode to ensure constant battery terminal voltage, constant battery current and constant load voltage as per the requirement. A novel sliding mode controller is used to improve transient and steady-state response of the system.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 2 February 2024

Xiongmin Tang, Zexin Zhou, Yongquan Chen, ZhiHong Lin, Miao Zhang and Xuecong Li

Dielectric barrier discharge (DBD) is widely used in the treatment of skin disease, surface modification of material and other fields of electronics. The purpose of this paper is…

Abstract

Purpose

Dielectric barrier discharge (DBD) is widely used in the treatment of skin disease, surface modification of material and other fields of electronics. The purpose of this paper is to design a high-performance power supply with a compact structure for excimer lamps in electronics application.

Design/methodology/approach

To design a high-performance power supply with a compact structure remains a challenge for excimer lamps in electronics application, a current-source type power supply in a single stage with power factor correction (PFC) is proposed. It consists of an excitation voltage generation unit and a PFC unit. By planning the modes of the excitation voltage generation unit, a bipolar pulse excitation voltage with a high rising and falling rate is generated. And a high power factor (PF) on the AC side is achieved by the interaction of a non-controlled rectifier and two inductors.

Findings

The experimental results show that not only a high-frequency and high-voltage bipolar pulse excitation voltage with a high average rising and falling rate (7.51GV/s) is generated, but also a high PF (0.992) and a low total harmonic distortion (5.54%) is obtained. Besides, the soft-switching of all power switches is realized. Compared with the sinusoidal excitation power supply and the current-source power supply, the proposed power supply in this paper can take advantage of the potential of excimer lamps.

Originality/value

A new high-performance power supply with a compact structure for DBD type excimer lamps is proposed. The proposed power supply can work stably in a wide range of frequencies, and the smooth regulation of the discharge power of the excimer lamp can be achieved by changing the switching frequency. The ideal excitation can be generated, and the soft switching can be realized. These features make this power supply a key player in the outstanding performance of the DBD excimer lamps application.

Details

Circuit World, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0305-6120

Keywords

Open Access
Article
Publication date: 11 October 2023

Abdulwasa B. Barnawi, Abdull Rahman A. Alfifi, Z.M.S. Elbarbary, Saad Fahed Alqahtani and Irshad Mohammad Shaik

Traditional level inverter technology has drawbacks in the aspect of Total harmonic distortion (THD) and switching losses for higher frequencies. Due to these drawbacks, two-level…

Abstract

Purpose

Traditional level inverter technology has drawbacks in the aspect of Total harmonic distortion (THD) and switching losses for higher frequencies. Due to these drawbacks, two-level inverters have become unprofitable for high-power applications. Multilevel inverters (MLIs) are used to enhance the output waveform characteristics (i.e. low THD) and to offer various inverter topologies and switching methods.

Design/methodology/approach

MLIs are upgraded versions of two-level inverters that offer more output levels in current and voltage waveforms while lowering the dv/dt and di/dt ratios. This paper aims to review and compare the different topologies of MLI used in high-power applications. Single and multisource MLI's working principal and switching states for each topology are demonstrated and compared. A Simulink model system integrated using detailed circuit simulations in developed in MATLAB®–Simulink program. In this system, a constant voltage source connected to MLI to feed asynchronous motor with squirrel cage rotor type is used to demonstrate the efficacy of the MLI under different varying speed and torque conditions.

Findings

MLI has presented better control and good range of system parameters than two-level inverter. It is suggested that the MLIs like cascade-five-level and NPC-five-level have shown low current harmonics of around 0.43% and 1.87%, respectively, compared to two-level inverter showing 5.82%.

Originality/value

This study is the first of its kind comparing the different topologies of single and multisource MLIs. This study suggests that the MLIs are more suitable for high-power applications.

Details

Frontiers in Engineering and Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-2499

Keywords

Article
Publication date: 5 March 2021

Chiemeka Loveth Maxwell, Dongsheng Yu and Yang Leng

The purpose of this paper is to design and construct an amplitude shift keying (ASK) modulator, which, using the digital binary modulating signal, controls a floating memristor…

Abstract

Purpose

The purpose of this paper is to design and construct an amplitude shift keying (ASK) modulator, which, using the digital binary modulating signal, controls a floating memristor emulator (MR) internally without the need for additional control circuits to achieve the ASK modulated wave.

Design/methodology/approach

A binary digital unipolar signal to be modulated is converted by a pre-processor circuit into a suitable bipolar modulating direct current (DC) signal for the control of the MR state, using current conveyors the carrier signal’s amplitude is varied with the change in the memristance of the floating MR. A high pass filter is then used to remove the DC control signal (modulating signal) leaving only the modulated carrier signal.

Findings

The results from the experiment and simulation are in agreement showed that the MR can be switched between two states and that a change in the carrier signals amplitude can be achieved by using an MR. Thus, showing that the circuit behavior is in line with the proposed theory and validating the said theory.

Originality/value

In this paper, the binary signal to be modulated is modified into a suitable control signal for the MR, thus the MR relies on the internal operation of the modulator circuit for the control of its memristance. An ASK modulation can then be achieved using a floating memristor without the need for additional circuits or signals to control its memristance.

Details

Circuit World, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 15 February 2024

Ali Hashemi, Hamed Taheri and Mohammad Dehghani

To prevent the coil from burning or getting damaged, it is necessary to estimate the duration of its operation as long as its temperature does not exceed the permissible limit…

Abstract

Purpose

To prevent the coil from burning or getting damaged, it is necessary to estimate the duration of its operation as long as its temperature does not exceed the permissible limit. This paper aims to investigate the effect of switching on the thermal behavior of impregnated and nonimpregnated windings. Also, the safe operating time for each winding is determined.

Design/methodology/approach

The power loss of the winding is expressed as a function of the winding specifications. Using homogenization techniques, the equivalent thermal properties for the homogenized winding are calculated and used in a proposed thermal equivalent circuit for winding modeling and analysis. The validity and accuracy of the proposed model are determined by comparing its analysis results and simulation and measurement results.

Findings

The results show that copper windings have better thermal behavior and lower temperature compared to aluminum windings. On the other hand, by impregnating or increasing the packing factor of the winding, the thermal behavior is improved. Also, by choosing the right duty cycle for the winding current source, it is possible to prevent the burning or damage of the winding and increase its lifespan. Comparing the measurement results with the analysis results shows that the proposed equivalent circuit has an error of less than 4% in the calculation of the winding center temperature.

Research limitations/implications

In this paper, the effect of temperature on the electrical resistance of the coil is ignored. Also, rectangular wires were not investigated. Research in these topics are considered as future work.

Originality/value

By calculating the thermal time constant of the winding, its safe operation time can be calculated so that its temperature does not exceed the tolerable value (150 °C). The proposed method analyzes both impregnated and nonimpregnated windings with various schemes. It investigates the effects of switching on their thermal behavior. Additionally, it determines the safe operating time for each type of winding.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 6 March 2024

Mouna Zerzeri, Intissar Moussa and Adel Khedher

The purpose of this paper aims to design a robust wind turbine emulator (WTE) based on a three-phase induction motor (3PIM).

Abstract

Purpose

The purpose of this paper aims to design a robust wind turbine emulator (WTE) based on a three-phase induction motor (3PIM).

Design/methodology/approach

The 3PIM is driven by a soft voltage source inverter (VSI) controlled by a specific space vector modulation. By adjusting the appropriate vector sequence selection, the desired VSI output voltage allows a real wind turbine speed emulation in the laboratory, taking into account the wind profile, static and dynamic behaviors and parametric variations for theoretical and then experimental analysis. A Mexican hat profile and a sinusoidal profile are therefore used as the wind speed system input to highlight the electrical, mechanical and electromagnetic system response.

Findings

The simulation results, based on relative error data, show that the proposed reactive power control method effectively estimates the flux and the rotor time constant, thus ensuring an accurate trajectory tracking of the wind speed for the wind emulation application.

Originality/value

The proposed architecture achieves its results through the use of mathematical theory and WTE topology combine with an online adaptive estimator and Lyapunov stability adaptation control methods. These approaches are particularly relevant for low-cost or low-power alternative current (AC) motor drives in the field of renewable energy emulation. It has the advantage of eliminating the need for expensive and unreliable position transducers, thereby increasing the emulator drive life. A comparative analysis was also carried out to highlight the online adaptive estimator fast response time and accuracy.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 31 March 2023

Tapas Kumar Mohapatra and Asim Kumar Dey

This study aims to propose a unique algorithm-based hysteresis current control technique (HCCT) for induction motor using a single-phase voltage source inverter (SPVSI) to…

Abstract

Purpose

This study aims to propose a unique algorithm-based hysteresis current control technique (HCCT) for induction motor using a single-phase voltage source inverter (SPVSI) to eliminate both sub and inter harmonics (SIH) and electromagnetic interference (EMI). The total harmonic distortion (THD) of the load current also reduces in comparison to standard HCCT and modified technique-based existing HCCT.

Design/methodology/approach

Matlab simulation has been carried out to develop an SPVSI model and the unique algorithm-based HCCT. The same platform has also been used to develop a few existing HCCTs such as standard, dual-band and modified. The switching frequency and harmonic analysis of load currents for all the HCCTs have been compared in the paper. The hardware implementation of the proposed algorithm-based HCCT was also verified and compared with the simulation results.

Findings

The proposed unique algorithm-based HCCT provides the benefits of both unipolar and bipolar switching techniques. It reduces the switching frequency as unipolar switching scheme and eliminates the EMI. It also reduces THD and nullifies SIH of the load current. This enables an improvement in the overall performance and efficiency of the motor.

Practical implications

This proposed HCCT eliminates the SIH and improves the overall efficiency of the motor, hence can prevent overheating, vibration, acoustic noise, pulsating torque and braking of the rotor shaft of the motor and increasing the reliability of the system.

Social implications

It can be implemented for the motors that are used in household applications and electric vehicles through one-phase inverter.

Originality/value

This proposed HCCT has detected the zero crossing point of reference current, allowed samples and shifted the necessary amount of hysteresis band at zero crossing region to eliminate SIH and THD.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 27 January 2022

Raktim Ghosh, Bhaskar Bagchi and Susmita Chatterjee

The paper tries to analyse empirically the impact of India's economic policy uncertainty (EPU) index on different macro-economic variables of India, like import, export, interest…

Abstract

Purpose

The paper tries to analyse empirically the impact of India's economic policy uncertainty (EPU) index on different macro-economic variables of India, like import, export, interest rate, exchange rate, inflation rate and stock market during pre-COVID-19 and COVID-19 era.

Design/methodology/approach

Although there exist several works where relationship and volatility among the stock markets and macro-economic indicators during the COVID-19 pandemic have been estimated, but till now none of the studies examined the effect of EPU index on different macro-economic variables in the Indian context along with the stock market due to the outbreak of COVID-19 pandemic. This is considered a noteworthy gap and hence opens up a new dimension for examination. To get a clear picture, monthly data from January, 2012 to September, 2021 have been considered where January, 2012–February, 2020 is taken as the pre-COVID-19 period and March, 2020–September, 2021 as COVID-19 period. All the data are converted into log natural. The authors applied DCC-GARCH model to investigate the impact of EPU index on volatility of selected variables over the study period across a multivariate framework and Markov regime-switching model to examine the switching over of the variables.

Findings

The results of dynamic conditional correlation - multivariate generalized autoregressive conditional heteroskedasticity (DCC-MGARCH) model indicates the presence of volatility in the dependent variables arising out of economic policy uncertainty considering the segmentation of the study period into pre-COVID-19 and COVID-19. The results of Markov regime-switching model show the variables make a significant move from low-volatility regime to high-volatility regime due to the presence of COVID-19.

Research limitations/implications

It can be implied that impact of EPU in terms of volatility on the Indian Stock Market will lead to unfavourable investment conditions for the prospective investors. Even, the different macro-economic variables are to suffer from the volatility arising out of EPU across a long time horizon as confirmed from the DCC-MGARCH model.

Originality/value

The study is original in nature. It adds superior values from the new and significant findings from the study empirically. Application of DCC-MGARCH model and Markov regime switching model makes the study an innovative one in terms of methodology and findings.

Details

Journal of Economic and Administrative Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1026-4116

Keywords

Article
Publication date: 27 September 2021

Sagar Juneja, Rajendra Pratap and Rajnish Sharma

Propagation characteristics of millimeter wave (mmW) frequencies that are being explored for implementing 5G network are quite different from sub 3GHz frequencies in which 4G…

Abstract

Purpose

Propagation characteristics of millimeter wave (mmW) frequencies that are being explored for implementing 5G network are quite different from sub 3GHz frequencies in which 4G network is operating, and hence antenna design for mmW 5G network is going to be significantly different. The purpose of this paper is to bring forth the unique challenges and opportunities of planar antenna design for mmW 5G network.

Design/methodology/approach

A lot of notable contemporary work has been investigated for this study and reported in this paper. A comparison of 4G and 5G technologies has been carried out to understand the difference between the air interface of two technologies that governs the antenna design. Important research gaps found after collating the work already done in the field have been bullet pointed for the use by many researchers working in this direction.

Findings

Several antenna design considerations have been laid out by the authors of this work, and it has been claimed that mmW 5G antenna design must satisfy these design considerations. In addition, prominent research gaps have been identified and thoroughly discussed.

Originality/value

As research in the field of mmW antenna design for 5G applications is still evolving, a lot of work is currently being done in this area. This study can prove to be important in understanding different challenges, opportunities and current state-of-art in the field of mmW planar antenna design for 5G cellular communication.

Details

Circuit World, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0305-6120

Keywords

1 – 10 of 241