Search results

1 – 10 of over 3000
Article
Publication date: 22 January 2020

Jiangtao Xu, Na Luo, Shaojie Liu, Baoshan Zhao, Fang Qi, Yinjun Lian and Litong Wang

The purpose of this paper is to design a component synthesis method to suppress the vibration of the flexible spacecraft, which has the constant amplitude force/moment actuator.

Abstract

Purpose

The purpose of this paper is to design a component synthesis method to suppress the vibration of the flexible spacecraft, which has the constant amplitude force/moment actuator.

Design/methodology/approach

The authors proposed a method to construct constant amplitude of time delay and composite coefficient sequences based on the principles of the component synthesis vibration suppression (CSVS). The associated design strategy of the CSVS torque control is also developed. The dynamic model consisting of a single axis rotating rigid central body and a fixed flexibility panel is used to validate the proposed method. Constraint modal and free modal method are both tested to analyse the natural frequencies of the panel and dynamic properties of rigid–flexible decoupling system, under the conditions of known and unknown frequencies. The feasibility of constructing CSVS control force based on the constraint modal frequency is also analysed.

Findings

The proposed method can suppress multistage vibration and has arbitrary order robustness for each order frequencies simultaneously. Simulation results show that only the duration time of the actuator has to be set for the proposed method, reasonable vibration suppression effect can be achieved.

Practical implications

The method can be used in spacecraft, especially flexible spacecraft to suppress the vibration; the approach is convenient for engineering application and can be easily designed.

Originality/value

The authors proposed a method to construct constant amplitude of time delay and composite coefficient sequences based on the principles of the CSVS.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 November 2010

Luis Reis, Bin Li and Manuel De Freitas

The purpose of this paper is to study the influence of multiaxial loading composed with different frequencies between the axial and torsional components in 42CrMo4 concerning…

Abstract

Purpose

The purpose of this paper is to study the influence of multiaxial loading composed with different frequencies between the axial and torsional components in 42CrMo4 concerning fatigue life and early crack growth orientation.

Design/methodology/approach

Biaxial fatigue tests were carried out by a biaxial servo‐hydraulic machine, considering different loading paths and different frequencies between the normal and shear stress components in 42CrMo4. Theoretical estimations for fatigue life and early crack growth orientation were performed by applying various critical plane models. In addition, fractographic analysis of the fracture surfaces was carried out. The estimated results are compared with experimental results.

Findings

Significant effects were observed of the different frequency between the axial and torsion components on fatigue life and early crack growth orientation. The critical plane models based on shear mode give better estimations when compared with experimental results.

Originality/value

The paper shows that improved fatigue design can be achieved by considering the influence of different frequencies in multiaxial loadings.

Details

International Journal of Structural Integrity, vol. 1 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 20 August 2019

Madeleine Du Toit and Kalenda Mutombo

This paper aims to characterise the hardness, tensile properties, corrosion behaviour and fatigue properties (in air and in a 3.5 per cent NaCl solution) of aluminium 6061-T651 in…

Abstract

Purpose

This paper aims to characterise the hardness, tensile properties, corrosion behaviour and fatigue properties (in air and in a 3.5 per cent NaCl solution) of aluminium 6061-T651 in the as-received and as-welded conditions.

Design/methodology/approach

Aluminium 6061-T651 plate material, prepared with double-V or square butt joint preparations was welded using semi-mechanised or mechanised pulsed gas metal arc welding. Magnesium-alloyed ER5356 or ER5183 filler material or silicon-alloyed ER4043 filler wire was used. The material was characterised in the as-supplied and as-welded conditions, and fatigue tests were performed in air and in a 3.5 per cent NaCl solution. The fatigue results were compared to the reference fatigue design curves for aluminium published in Eurocode 9 – Part 1-3.

Findings

Significant softening, attributed to the partial dissolution and coarsening of precipitates, grain growth and recrystallisation during welding, was observed in the heat-affected zone (HAZ) of the 6061-T651 welds. During tensile testing, failure occurred in the HAZ of all 6061 welds tested. Welding reduced the room temperature fatigue life of all specimens evaluated. In 6061 welds, failure occurred preferentially in the softened HAZ of the welds. The presence of a corrosive environment (a 3.5 per cent NaCl solution in this investigation) during fatigue testing reduced the fatigue properties of all the samples tested. Corrosion pits formed preferentially at second phase particles and reduced the overall fatigue life by accelerating fatigue crack initiation.

Originality/value

The fatigue properties of welded aluminium structures under dynamic loading conditions have been studied extensively. Welding is known to create tensile residual stresses, to promote grain growth, recrystallisation and softening in the HAZ, and to introduce weld defects that act as stress concentrations and preferential fatigue crack initiation sites. Several fatigue studies of aluminium welds emphasised the role of precipitates, second phase particles and inclusions in initiating fatigue cracks. When simultaneously subjected to a corrosive environment and dynamic loading, the fatigue properties are often adversely affected and even alloys with good corrosion resistance may fail prematurely under conditions promoting fatigue failure. The corrosion-fatigue performance of aluminium welds has not been systematically examined to date.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 8 March 2011

Ulrike C. Heckenberger, Elke Hombergsmeier, Vitus Holzinger and Wolfgang von Bestenbostel

Laser shock peening (LSP) is a process capable of introducing compressive residual stresses into a metallic component. The residual compressive stress field can extend deeper…

Abstract

Purpose

Laser shock peening (LSP) is a process capable of introducing compressive residual stresses into a metallic component. The residual compressive stress field can extend deeper below the treated surface than that produced by conventional shot peening (SP). The effect of such deep compressive stress profile is expected to result in a significantly greater benefit in fatigue resistance after LSP compared to SP. The purpose of this paper is to examine this further.

Design/methodology/approach

Residual stress profiles have been determined by X‐ray diffraction and incremental centre hole drilling. They have been correlated with the respective LSP process parameters and the obtained fatigue behavior.

Findings

A significant improvement of the fatigue life was found for an R ratio of 0.1. SP leads to a fatigue improvement of about 15 percent. For the same specimen geometry, a fatigue life improvement of about 25‐35 percent, depending on the load level, can be obtained after LSP. However, not only for the positive R ratio, where it is quite obvious, but also for the negative R ratios, R=−1 and −3, an increase of the fatigue life is generated by SP and LSP.

Originality/value

A shown LSP has a high potential for extending the service life of metallic components at the design stage, but it may also be possible to apply this technique to in‐service aircraft to extend the service goals of existing structures.

Details

International Journal of Structural Integrity, vol. 2 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 10 February 2022

Yue Zhou, El Mehdi Abbara, Dayue Jiang, Arad Azizi, Mark D. Poliks and Fuda Ning

This study aims to uncover the multiscale relations among geometry, surface finish, microstructure and fatigue properties of curved-surface AlSi10Mg parts fabricated by powder bed…

Abstract

Purpose

This study aims to uncover the multiscale relations among geometry, surface finish, microstructure and fatigue properties of curved-surface AlSi10Mg parts fabricated by powder bed fusion (PBF) additive manufacturing.

Design/methodology/approach

This paper investigated the high-cycle tensile and bending fatigue behaviors of PBF-built AlSi10Mg parts with curved surfaces. Besides, the surface finish, porosity and microstructure around various curvatures were characterized. Meanwhile, the stress distributions of the fatigue specimens with curved surfaces under the dynamic tensile/bending loading were analyzed via theoretical analysis and ANSYS simulation.

Findings

The results showed that the as-built specimens with the smallest curvature exhibited the best surface quality, smallest grain sizes and thinnest grain boundaries. In addition, the tensile fatigue fracture occurred around the largest curvature position of fatigue specimens, which was consistent with the simulated fatigue safety factor results. Moreover, the bending fatigue specimens with the largest curvature presented the shortest fatigue life due to the highest bending and shear stresses along the loading direction.

Originality/value

So far, most studies have focused on the fatigue behavior of as-built AlSi10Mg parts with planar structures only. The investigation on fatigue properties of as-built AlSi10Mg parts with curved surfaces remains unexplored. This study provides new insights into the characterization and quantification of the fatigue performance of PBF-built metal parts with complex geometries, the knowledge of which can promote their adoption in real industries.

Details

Rapid Prototyping Journal, vol. 28 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 April 2022

Jingbo Zhao, Yan Tao and Zhiming Sun

This paper aims to clarify voltage sourced converter’s (VSC’s) influence rules on the alternating current (AC) short-circuit current and identify the key factors, so as to propose…

131

Abstract

Purpose

This paper aims to clarify voltage sourced converter’s (VSC’s) influence rules on the alternating current (AC) short-circuit current and identify the key factors, so as to propose the short-circuit current suppression strategy.

Design/methodology/approach

This paper investigates the key factors which impact the short-circuit current supplied by the VSC based on the equivalent current source model. This study shows that the phase of the VSC equivalent current source is mainly affected by the type of fault, whereas the amplitude is mainly decided by the control mode, the amplitude limiter and the electrical distance. Based on the above influence mechanism, the dynamic limiter with short-circuit current limiting function is designed. The theoretical analysis is verified by simulations on PSCAD.

Findings

The short-circuit current feeding from VSC is closely related to the control mode and control parameters of the VSC, fault type at AC side and the electrical distance of the fault point. The proposed dynamic limiter can make VSC absorb more reactive power to suppress the short-circuit current.

Research limitations/implications

The dynamic limiter proposed in this paper is limited to suppress three-phase short-circuit fault current. The future work will focus more on improving and extending the dynamic limiter to the fault current suppression application in other fault scenarios.

Practical implications

The research results provide a reference for the design of protection system.

Originality/value

The key influence factors are conducive to put forward the measures to suppress the fault current, eliminate the risk of short-circuit current exceeding the standard and reduce the difficulty of protection design.

Details

Circuit World, vol. 49 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 3 April 2019

Girendra Kumar, Ashok Kumar and H.N. Bar

The purpose of this paper is to study the effect of mean stress and stress amplitude on the asymmetric cyclic deformation behavior of SA333 Gr-6 C-Mn steel. Such type of loading…

63

Abstract

Purpose

The purpose of this paper is to study the effect of mean stress and stress amplitude on the asymmetric cyclic deformation behavior of SA333 Gr-6 C-Mn steel. Such type of loading may arise during the service period because of the load fluctuations, thermal gradients and sudden loading like seismic events. Tests were also carried out at different temperatures to understand the effect of it on sensitiveness of the materials deformation behavior.

Design/methodology/approach

Cylindrical specimen of 8-mm gauge diameter and 15-mm gauge length was fabricated from the pipe section along its axis. Stress controlled ratcheting tests were carried out by using triangular waveform for cyclic loading. The strain accumulations were measured using 12.5-mm gauge length extensometer. Ratcheting tests were carried out at fixed stress amplitude of 400 MPa and mean stress varying from 0 to 75 MPa, whereas at the fixed mean stress of 100 MPa and stress amplitude varies from 300 to 400 MPa at 300°C. To study the effect of temperature on ratcheting behavior, tests were carried out at a load of 100 MPa mean stress and 350 MPa stress amplitude, with a varying temperature between room temperature and 350°C. The stress rate of 115 MPas-1 was kept constant for all the tests.

Findings

Increase in mean stress and stress amplitude, ratcheting strain and plastic strain amplitude increases, whereas ratcheting life decreases. With an increase in temperature, ratcheting life increases and strain accumulation decreases up to 300°C, whereas on further increase in temperature, strain accumulation increases with reduction in ratcheting life. Minimum ratcheting rate was observed at 250°C and 300°C. The dynamic strain aging (DSA) phenomena lead to the hardening of the material. The investigated steel shows DSA temperature regime lies between 250°C and 300°C. The failure modes at 250°C and 300°C temperature was transgranular, whereas at 350°C complete ductile.

Research limitations/implications

The stress rate and loading condition may vary to study the ratcheting behavior.

Practical implications

From this study, the critical cyclic load may be determined. The DSA temperature regime of this material is determined at this stress rate. This could help to evaluate the cyclic deformation behavior of the material with temperature changes.

Originality/value

In this investigation, the DSA temperature regime has been determined where maximum ratcheting life, minimum strain accumulation and ratcheting rate were observed. The critical load where the minimum life of the material occurred at elevated temperature is 100 MPa mean stress and 400 MPa stress amplitude.

Details

World Journal of Engineering, vol. 16 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 17 July 2019

Noureddine Abouricha, Mustapha El Alami and Khalid Souhar

The purpose of this paper is to model the convective flows in a room equipped by a glass door and a heated floor of length l = 0.8 × H and submitted to a sinusoidal temperature…

69

Abstract

Purpose

The purpose of this paper is to model the convective flows in a room equipped by a glass door and a heated floor of length l = 0.8 × H and submitted to a sinusoidal temperature profile and mono alternative temperature profile.

Design/methodology/approach

The paper opts for a numerical study of convective flows in a large scale cavity using the Lattice Boltzmann Method (LBM) by considering a two dimensions (2D) square cavity of side H and filled by air (Pr = 0.71). All the vertical walls, the ceiling and the rest of the floor are thermally insulated, the hot portion of length l = 0.8×H is heated with two imposed temperature profiles of amplitude values 0.2 ≤  a  ≤ 0.6 and for two different periods ζ = ζ0 and ζ = 0.4×ζ0. One of the vertical walls has a cold portion θc = 0 that represents the glass door.

Findings

A systematic study of the flow structure and heat transfer is carried out considering principal control parameters: amplitude “a” and period ζ for Rayleigh number Ra = 108. Effects of these parameters on results are presented in terms of isotherms, streamlines, profiles of velocities, temperature in the cavity, global and local Nusselt number. It has been found that an increase in amplitude or period increases the amplitude of the temperature in the core of cavity. The Nusselt number increases when the amplitude “a” of the imposed temperature increases, but this later is not affected by variation of the period.

Originality/value

The authors used LBM to simulate the convective flows in a cavity at high Ra, heated from below by tow imposed temperature profiles. Indeed, they simulate a local equipped by a solar water heater (SWH). The floor is subjected to a periodic heating: Sinusoidal heating (Case 1) for which the temperature varies sinusoidally (SWH without a supplement), and mono alternation heating (Case 2), the temperature evolves like a redressed signal (SWH with a supplement). The considered method has been successfully validated and compared with the previous work. The study has been conducted using several control parameters such as the signal amplitude and period in the case of turbulent convection. This allowed us to obtain a considerable set of results that can be used for engineering.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 February 2022

Chetan Jalendra, B.K. Rout and Amol Marathe

Industrial robots are extensively deployed to perform repetitive and simple tasks at high speed to reduce production time and improve productivity. In most cases, a compliant…

Abstract

Purpose

Industrial robots are extensively deployed to perform repetitive and simple tasks at high speed to reduce production time and improve productivity. In most cases, a compliant gripper is used for assembly tasks such as peg-in-hole assembly. A compliant mechanism in the gripper introduces flexibility that may cause oscillation in the grasped object. Such a flexible gripper–object system can be considered as an under-actuated object held by the gripper and the oscillations can be attributed to transient disturbance of the robot itself. The commercially available robots do not have a control mechanism to reduce such induced vibration. Thus, this paper aims to propose a contactless vision-based approach for vibration suppression which uses a predictive vibrational amplitude error-based second-stage controller.

Design/methodology/approach

The proposed predictive vibrational amplitude error-based second-stage controller is a real-time vibration control strategy that uses predicted error to estimate the second-stage controller output. Based on controller output, input trajectories were estimated for the internal controller of the robot. The control strategy efficiently handles the system delay to execute the control input trajectories when the oscillating object is at an extreme position.

Findings

The present controller works along with the internal controller of the robot without any interruption to suppress the residual vibration of the object. To demonstrate the robustness of the proposed controller, experimental implementation on Asea Brown Boveri make industrial robot (IRB) 1410 robot with a low frame rate camera has been carried out. In this experiment, two objects have been considered that have a low (<2.38 Hz) and high (>2.38 Hz) natural frequency. The proposed controller can suppress 95% of vibration amplitude in less than 3 s and reduce the stability time by 90% for a peg-in-hole assembly task.

Originality/value

The present vibration control strategy uses a camera with a low frame rate (25 fps) and the delays are handled intelligently to favour suppression of high-frequency vibration. The mathematical model and the second-stage controller implemented suppress vibration without modifying the robot dynamical model and the internal controller.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 31 May 2011

J.D. Costa, J.A.M. Ferreira and L.P. Borrego

Welded components are often subjected to variable amplitude service loads, increasing the uncertainty of fatigue life due to material strength, notch geometries, defect content…

Abstract

Purpose

Welded components are often subjected to variable amplitude service loads, increasing the uncertainty of fatigue life due to material strength, notch geometries, defect content and residual stresses. In the case of friction stir welding (FSW) of aluminium alloys no data were found available concerning fatigue behaviour under variable amplitude loading. The purpose of this paper is to determine the fatigue strength of friction stir welds in AA6082‐T6 under constant and variable amplitude loading and analyse the validity of Miner's rule for these specific welding conditions.

Design/methodology/approach

Fatigue tests were carried out in a servo‐hydraulic testing machine using a stress ratio of R=0. Typified Gassner amplitude spectra were considered, using four shape exponent values. Microhardness tests were performed to characterize the Vickers hardness profile in the vicinity of the weld area. Relatively to the base material (BM), the FSW process leads to a decrease of the static mechanical properties.

Findings

Detailed examination revealed a hardness decrease in the thermo‐mechanically affected zone and the nugget zone average hardness was found to be lower than the base alloy hardness. The comparison with data collected from the literature shows that FSW specimens present higher fatigue resistance than specimens welded by metal inert gas and tungsten inert gas processes. However, they still have lower fatigue lives than the BM. Using the equivalent stress calculated by Miner's rule, a good agreement was observed between constant and variable fatigue loading results. The characteristic curve obtained for friction stir welds is higher than the International Institute of Welding (IIW) fatigue class for fusion welds with full‐penetration both‐sided butt joints.

Originality/value

No data are available concerning fatigue behaviour under variable amplitude loading for friction stir welds of aluminium alloys. Furthermore, this paper analyses the fatigue strength of friction stir welds in AA6082‐T6 under constant and variable amplitude loading in order to verify the validity of Miner's rule for this specific welding process. A comparison between characteristic fatigue curves, using IIW fatigue classes (FAT), is also performed.

Details

International Journal of Structural Integrity, vol. 2 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of over 3000