Search results

1 – 10 of over 1000
Article
Publication date: 1 January 1994

F. Beux and A. Dervieux

We consider the gradient method applied to the optimal control of asystem for which each simulation is expensive. A method for increasing thenumber of unknowns, and relying on…

Abstract

We consider the gradient method applied to the optimal control of a system for which each simulation is expensive. A method for increasing the number of unknowns, and relying on multilevel ideas is tested for the academic problem of shape optimization of a nozzle in a subsonic or transonic Euler flow.

Details

Engineering Computations, vol. 11 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 1995

Gh. Juncu and I. Iliuta

The paper presents the numerical performance of the preconditionedgeneralized conjugate gradient (PGCG) methods in solvingnon‐linear convection — diffusion equations…

Abstract

The paper presents the numerical performance of the preconditioned generalized conjugate gradient (PGCG) methods in solving non‐linear convection — diffusion equations. Three non‐linear systems which describe a non‐isothermal chemical reactor, the chemically driven convection in a porous medium and the incompressible steady flow past a sphere are the test problems. The standard second order accurate centred finite difference scheme is used to discretize the models equations. The discrete approximations are solved with a double iterative process using the Newton method as outer iteration and the PGCG algorithm as inner iteration. Three PGCG techniques, which emerge to be the best performing, are tested. Laplace‐type operators are employed for preconditioning. The results show that the convergence of the PGCG methods depends strongly on the convection—diffusion ratio. The most robust algorithm is GMRES. But even with GMRES non‐convergence occurs when the convection—diffusion ratio exceeds a limit value. This value seems to be influenced by the non‐linearity type.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 5 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 April 2013

Hosein Molavi, Javad Rezapour, Sahar Noori, Sadjad Ghasemloo and Kourosh Amir Aslani

The purpose of this paper is to present novel search formulations in gradient‐type methods for prediction of boundary heat flux distribution in two‐dimensional nonlinear heat…

Abstract

Purpose

The purpose of this paper is to present novel search formulations in gradient‐type methods for prediction of boundary heat flux distribution in two‐dimensional nonlinear heat conduction problems.

Design/methodology/approach

The performance of gradient‐type methods is strongly contingent upon the effective determination of the search direction. Based on the definition of this parameter, gradient‐based methods such as steepest descent, various versions of both conjugate gradient and quasi‐Newton can be distinguished. By introducing new search techniques, several examples in the presence of noise in data are studied and discussed to verify the accuracy and efficiency of the present strategies.

Findings

The verification of the proposed methods for recovering time and space varying heat flux. The performance of the proposed methods via comparisons with the classical methods involved in its derivation.

Originality/value

The innovation of the present method is to use a hybridization of a conjugate gradient and a quasi‐Newton method to determine the search directions in gradient‐based approaches.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 March 2017

Oleg M. Alifanov

The main purpose of this study, reflecting mainly the content of the authors’ plenary lecture, is to make a brief overview of several approaches developed by the author and his…

Abstract

Purpose

The main purpose of this study, reflecting mainly the content of the authors’ plenary lecture, is to make a brief overview of several approaches developed by the author and his colleagues to the solution to ill-posed inverse heat transfer problems (IHTPs) with their possible extension to a wider class of inverse problems of mathematical physics and, most importantly, to show the wide possibilities of this methodology by examples of aerospace applications. In this regard, this study can be seen as a continuation of those applications that were discussed in the lecture.

Design/methodology/approach

The application of the inverse method was pre-tested with experimental investigations on a special test equipment in laboratory conditions. In these studies, the author used the solution to the nonlinear inverse problem in the conjugate (conductive and convective) statement. The corresponding iterative algorithm has been developed and tested by a numerical and experimental way.

Findings

It can be stated that the theory and methodology of solving IHTPs combined with experimental simulation of thermal conditions is an effective tool for various fundamental and applied research and development in the field of heat and mass transfer.

Originality/value

With the help of the developed methods of inverse problems, the investigation was conducted for a porous cooling with a gaseous coolant for heat protection of the re-entry vehicle in the natural environment of hypersonic flight. Moreover, the analysis showed that the inverse methods can make a useful contribution to the study of heat transfer at the surface of a solid body under the influence of the hypersonic heterogeneous (dusty) gas stream and in many other aerospace applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 November 2007

Yiqiang Yu and Andy McCowen

The purpose of this paper is to investigate and analyze the efficiency and stability of the implementation of the Crout version of ILU (ILUC) preconditioning on fast‐multipole…

Abstract

Purpose

The purpose of this paper is to investigate and analyze the efficiency and stability of the implementation of the Crout version of ILU (ILUC) preconditioning on fast‐multipole method (FMM) for solving large‐scale dense complex linear systems arising from electromagnetic open perfect electrical conductor (PEC).

Design/methodology/approach

The FMM is employed to reduce the computational complexity of the matrix‐vector product and the memory requirement of the impedance matrix. The numerical examples are initially solved by the quasi‐minimal residual (QMR) method with ILUC preconditioning. In order to fully investigate the performance of ILUC in connection with other iterative solvers, a case is also solved by bi‐conjugate gradient solver and conjugate gradient squared solver with ILUC preconditioning.

Findings

The solutions show that the ILUC preconditioner is stable and significantly improves the performance of the QMR solver on large ill‐conditioned open PEC problems compared to using ILU(0) and threshold‐based ILU (ILUT) preconditioners. It dramatically decreases the number of iterations required for convergence and consequently reduces the total CPU solving time with a reasonable overhead in memory.

Practical implications

The preconditioning scheme can be applied to large ill‐conditioned open PEC problems to effectively speed up the overall electromagnetic simulation progress while maintaining the computational complexity of FMM. More complex structures including wire‐PEC junctions and microstrip arrays may be addressed in future work.

Originality/value

The performance of ILUC has been previously reported only on preconditioning sparse linear systems, in which the ILU preconditioner is constructed by the ILUC of the coefficient matrix (e.g. matrix arised from two‐dimensional finite element convection‐diffusion problem) and subsequently applied to the same sparse linear systems; so it is important to report its performance on the dense complex linear systems that arised from open PEC electromagnetic problems. In contrast, the preconditioner is constructed upon the near‐field matrix of the FMM and subsequently applied to the whole dense linear system. The comparison of its performance against the diagonal, ILU(0) and ILUT precoditioners is also presented.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 26 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 21 August 2017

Kamal Sharma, Varsha Shirwalkar and Prabir K. Pal

This paper aims to provide a solution to the first phase of a force-controlled circular Peg-In-Hole assembly using an industrial robot. The paper suggests motion planning of the…

Abstract

Purpose

This paper aims to provide a solution to the first phase of a force-controlled circular Peg-In-Hole assembly using an industrial robot. The paper suggests motion planning of the robot’s end-effector so as to perform Peg-In-Hole search with minimum a priori information of the working environment.

Design/methodology/approach

The paper models Peg-In-Hole search problem as a problem of finding the minima in depth profile for a particular assembly. Thereafter, various optimization techniques are used to guide the robot to locate minima and complete the hole search. This approach is inspired by a human’s approach of searching a hole by moving peg in various directions so as to search a point of maximum insertion which is same as the minima in depth profile.

Findings

The usage of optimization techniques for hole search allows the robot to work with minimum a priori information of the working environment. Also, the iterative nature of the techniques adapts to any disturbance during assembly.

Practical implications

The techniques discussed here are quite useful if a force-controlled assembly needs to be performed in a highly unknown environment and also when the assembly setup can get disturbed in between.

Originality/value

The concept is original and provides a non-conventional use of optimization techniques, not for optimization of some process directly but for an industrial robot’s motion planning.

Details

Industrial Robot: An International Journal, vol. 44 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 June 2017

Andre Luis Cavalcanti Bueno, Noemi de La Rocque Rodriguez and Elisa Dominguez Sotelino

The purpose of this work is to present a methodology that harnesses the computational power of multiple graphics processing units (GPUs) and hides the complexities of tuning GPU…

Abstract

Purpose

The purpose of this work is to present a methodology that harnesses the computational power of multiple graphics processing units (GPUs) and hides the complexities of tuning GPU parameters from the users.

Design/methodology/approach

A methodology for auto-tuning OpenCL configuration parameters has been developed.

Findings

This described process helps simplify coding and generates a significant gain in time for each method execution.

Originality/value

Most authors develop their GPU applications for specific hardware configurations. In this work, a solution is offered to make the developed code portable to any GPU hardware.

Details

Engineering Computations, vol. 34 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 28 December 2020

Amneh Hamida, Abdulsalam Alsudairi, Khalid Alshaibani and Othman Alshamrani

Buildings are major contributors to greenhouse gases (GHG) along the various stages of the building life cycle. A range of tools have been utilised for estimating building energy…

795

Abstract

Purpose

Buildings are major contributors to greenhouse gases (GHG) along the various stages of the building life cycle. A range of tools have been utilised for estimating building energy use and environmental impacts; these are time-consuming and require massive data that are not necessarily available during early design stages. Therefore, this study aimed to develop an Environmental Impacts Cost Assessment Model (EICAM) that quantifies both energy and environmental costs for residential buildings.

Design/methodology/approach

An Artificial Neural Network (ANN) was employed to develop the EICAM. The model consists of six input parameters, including wall type, roof type, glazing type, window to wall ratio (WWR), shading device and building orientation. In addition, the model calculates four measures: annual energy cost, operational carbon over 20 years, envelope embodied carbon and total carbon per square metre. The ANN architecture is 6:13:4:4, where the conjugate gradient algorithm was applied to train the model and minimise the mean squared error (MSE). Furthermore, regression analysis for the ANN prediction for each output was performed.

Findings

The MSE was minimised to 0.016 while training the model. Also, the correlation between each ANN output and the actual output was very strong, with an R2 value for each output of almost 0.998. Moreover, validation was conducted for each output, with the error percentages calculated at 0.26%, 0.25%, 0.03% and 0.27% for the annual energy cost, operational carbon, envelope materials embodied carbon and total carbon per square metre, respectively. Accordingly, the EICAM contributes to enhancing design decision-making concerning energy consumption and carbon emissions in the early design stages.

Research limitations/implications

This study provides theoretical implications to the domain of building environmental impact assessment through illustrating a systematic approach for developing an energy-based prediction model that generates four environmental-oriented outputs, namely energy cost, operational energy carbon, envelope embodied carbon, and total carbon. The model developed has practical implications for the architectural/engineering (A/E) industries by providing a useful tool to easily predict environmental impact costs during the early design phase. This would enable designers in Saudi Arabia to make effective design decisions that would increase sustainability in the building life cycle.

Originality/value

By providing a holistic predictive model entitled EICAM, this study endeavours to bridge the gap between energy costs and environmental impacts in a predictive model for Saudi residential units. The novelty of this model is that it is an alternative tool that quantifies both energy cost, as well as building’s environmental impact, in one model by using a machine learning approach. Besides, EICAM predicts its outcomes more quickly than conventional tools such as DesignBuilder and is reliable for predicting accurate environmental impact costs during early design stages.

Details

Engineering, Construction and Architectural Management, vol. 28 no. 10
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 31 May 2019

Oliver Krammer, Péter Martinek, Balazs Illes and László Jakab

This paper aims to investigate the self-alignment of 0603 size (1.5 × 0.75 mm) chip resistors, which were soldered by infrared or vapour phase soldering. The results were used for…

Abstract

Purpose

This paper aims to investigate the self-alignment of 0603 size (1.5 × 0.75 mm) chip resistors, which were soldered by infrared or vapour phase soldering. The results were used for establishing an artificial neural network for predicting the component movement during the soldering.

Design/methodology/approach

The components were soldered onto an FR4 testboard, which was designed to facilitate the measuring of the position of the components both prior to and after the soldering. A semi-automatic placement machine misplaced the components intentionally, and the self-alignment ability was determined for soldering techniques of both infrared and vapour phase soldering. An artificial neural network-based prediction method was established, which is able to predict the position of chip resistors after soldering as a function of component misplacement prior to soldering.

Findings

The results showed that the component can self-align from farer distances by using vapour phase method, even from relative misplacement of 50 per cent parallel to the shorter side of the component. Components can self-align from a relative misplacement only of 30 per cent by using infrared soldering method. The established artificial neural network can predict the component self-alignment with an approximately 10-20 per cent mean absolute error.

Originality/value

It was proven that the vapour phase soldering method is more stable from the component’s self-alignment point of view. Furthermore, machine learning-based predictors can be applied in the field of reflow soldering technology, and artificial neural networks can predict the component self-alignment with an appropriately low error.

Details

Soldering & Surface Mount Technology, vol. 31 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 3 May 2016

Andrew Gavin Bradford Mowat, Wilhelm Johann van den Bergh, Arnaud George Malan and Daniel Wilke

An area of great interest in current computational fluid dynamics research is that of free-surface modelling (FSM). Semi-implicit pressure-based FSM flow solvers typically involve…

Abstract

Purpose

An area of great interest in current computational fluid dynamics research is that of free-surface modelling (FSM). Semi-implicit pressure-based FSM flow solvers typically involve the solution of a pressure correction equation. The latter being computationally intensive, the purpose of this paper is to involve the implementation and enhancement of an algebraic multigrid (AMG) method for its solution.

Design/methodology/approach

All AMG components were implemented via object-oriented C++ in a manner which ensures linear computational scalability and matrix-free storage. The developed technology was evaluated in two- and three-dimensions via application to a dam-break test case.

Findings

AMG performance was assessed via comparison of CPU cost to that of several other competitive sparse solvers. The standard AMG implementation proved inferior to other methods in three-dimensions, while the developed Freeze version achieved significant speed-ups and proved to be superior throughout.

Originality/value

A so-called Freeze method was developed to address the computational overhead resulting from the dynamically changing coefficient matrix. The latter involves periodic AMG setup steps in a manner that results in a robust and efficient black-box solver.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 1000