Search results

1 – 3 of 3
Article
Publication date: 8 January 2018

Izhar and Farid Ullah Khan

The purpose of this paper is to develop a novel electromagnetic-based acoustic energy harvester (EH) for the application of wireless autonomous sensors.

Abstract

Purpose

The purpose of this paper is to develop a novel electromagnetic-based acoustic energy harvester (EH) for the application of wireless autonomous sensors.

Design/methodology/approach

The developed acoustic EH comprises a Helmholtz resonator (HR), a suspension system that consists of a flexible membrane and a permanent magnet, a couple of coils and a coil holder. Furthermore, the HR, used in the harvester, is designed for a specific resonant frequency based on simulation carried out in COMSOL Multiphysics®.

Findings

The developed harvester is tested both in lab under harmonic sound pressure levels (SPLs) and in real environment under random SPLs. In lab, when exposed to 100 dB SPL, the harvester generated a peak power of 212 µW. Furthermore, in real environment in vicinity of electric generator, the harvester produced an output voltage of about 110 mV collectively from its both coils.

Originality/value

In this paper, a novel geometric configuration for electromagnetic-based acoustic EH is proposed. In the developed harvester, two coils are placed in it to achieve enhanced electrical output from it for the first time.

Details

Sensor Review, vol. 38 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 December 1965

C.E. Tharratt

A Theoretical Approach to Assessing the Thermodynamic Process Within the Combustion Chamber of the Propulsive Duct, an Examination of the Potential of the Duct with Special…

Abstract

A Theoretical Approach to Assessing the Thermodynamic Process Within the Combustion Chamber of the Propulsive Duct, an Examination of the Potential of the Duct with Special Reference to the Application of Feedback and Spark Discharge Techniques. The type of valve of greatest importance to successful duct design is one which is synchronized to the pressure fluctuations within the combustion zone. Although there have been a number of proposals for mechanically linked valves (indeed the normal internal combustion engine works on this principle) and rotary valves, these have severe limitations at the higher frequencies and are generally impracticable for the application under review. This section will therefore concentrate on the mechanical reed‐type valve which, theoretically, need have only one moving part, i.e. the dynamic metal reed, and the aerodynamic valve which relies upon the interaction of two gas dynamical vibrations and has no moving mechanical parts.

Details

Aircraft Engineering and Aerospace Technology, vol. 37 no. 12
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 October 1938

Under this heading are published regularly abstracts of all Reports and Memoranda of the Aeronautical Research Committee, Reports and Technical Notes of the U.S. National Advisory…

Abstract

Under this heading are published regularly abstracts of all Reports and Memoranda of the Aeronautical Research Committee, Reports and Technical Notes of the U.S. National Advisory Committee for Aeronautics and publications of other similar research bodies as issued

Details

Aircraft Engineering and Aerospace Technology, vol. 10 no. 10
Type: Research Article
ISSN: 0002-2667

1 – 3 of 3