Search results

1 – 2 of 2
Open Access
Article
Publication date: 25 July 2022

Cara Greta Kolb, Maja Lehmann, Johannes Kriegler, Jana-Lorena Lindemann, Andreas Bachmann and Michael Friedrich Zaeh

This paper aims to present a requirements analysis for the processing of water-based electrode dispersions in inkjet printing.

924

Abstract

Purpose

This paper aims to present a requirements analysis for the processing of water-based electrode dispersions in inkjet printing.

Design/methodology/approach

A detailed examination of the components and the associated properties of the electrode dispersions has been carried out. The requirements of the printing process and the resulting performance characteristics of the electrode dispersions were analyzed in a top–down approach. The product and process side were compared, and the target specifications of the dispersion components were derived.

Findings

Target ranges have been identified for the main component properties, balancing the partly conflicting goals between the product and the process requirements.

Practical implications

The findings are expected to assist with the formulation of electrode dispersions as printing inks.

Originality/value

Little knowledge is available regarding the particular requirements arising from the systematic qualification of aqueous electrode dispersions for inkjet printing. This paper addresses these requirements, covering both product and process specifications.

Details

Rapid Prototyping Journal, vol. 28 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 6 May 2020

Runong Xu, Yuming Wu and Yao Huang

Increasing carbon productivity is an effective way to reduce carbon emissions, while boosting economic prosperity. For appropriate formulating and enforcement of energy saving and…

1205

Abstract

Purpose

Increasing carbon productivity is an effective way to reduce carbon emissions, while boosting economic prosperity. For appropriate formulating and enforcement of energy saving and carbon emissions reduction policies in various sectors, it is of great significance to investigate the evolution characteristics and convergence modes of carbon productivity across the manufacturing sectors.

Design/methodology/approach

Using slack-based measure directional distance function (SBM-DDF) and global Malmquist–Luenberger (GML) productivity index, this paper measures the carbon productivities of 29 manufacturing subsectors in Shanghai, China, from 2001 to 2016 under the total factor framework. Furthermore, based on the convergence theories, it empirically examines the convergence of carbon productivity across these manufacturing sectors.

Findings

The measurement results suggest that the carbon productivities of the manufacturing sectors in Shanghai show an increasing tendency on the whole, and technical efficiency instead of technological change makes a main contribution to the increase. It is found that there is no obvious σ convergence across the manufacturing sectors in Shanghai, but there exist both absolute ß convergence and conditional ß convergence. Moreover, there is heterogeneity in convergence characteristics between the clean sectors and polluting sectors. The findings also show that firm size and industry structure have significant positive impacts on the growth of carbon productivities of the manufacturing sectors, whereas the impacts of capital deepening and energy consumption structure are significantly negative.

Originality/value

This paper measures the carbon productivities of the manufacturing subsectors by applying SBM-DDF and GML index, so as to improve the accuracy. It provides an insight into the convergence of carbon productivity across the manufacturing sectors.

Details

International Journal of Climate Change Strategies and Management, vol. 12 no. 3
Type: Research Article
ISSN: 1756-8692

Keywords

Access

Only Open Access

Year

Content type

1 – 2 of 2