Search results

1 – 10 of 24
Article
Publication date: 1 August 2023

Haifeng Fang, Yangyang Wei and Shuo Dong

Tactile sensation is an important sensory function for robots in contact with the external environment. To better acquire tactile information about objects, this paper aims to…

Abstract

Purpose

Tactile sensation is an important sensory function for robots in contact with the external environment. To better acquire tactile information about objects, this paper aims to propose a three-layer structure of the interdigital flexible tactile sensor.

Design/methodology/approach

The sensor consists of a bottom electrode layer, a middle pressure-sensitive layer and a top indenter layer. First, the pressure sensitive material, structure design, fabrication process and circuit design of the sensor are introduced. Then, the calibration and performance test of the designed sensor is carried out. Four functions are used to fit and calibrate the relationship between the output voltage of the sensor and the contact force. Finally, the contact force sensing test of different weight objects and the flexible test of the sensor are carried out.

Findings

The performance test results show that the sensitivity of the sensor is 0.93 V/N when it is loaded with 0–3 N and 0.23 V/N when it is loaded with 3–5 N. It shows good repeatability, and the cross-interference between the sensing units is generally low. The contact force sensing test results of different weight objects show that the proposed sensor performs well in contact force. Each part of the sensor is a flexible material, allowing the sensor to achieve bending deformation, so that the sensor can better perceive the contact signs of the grasped object.

Practical implications

The sensor can paste the surface of the paper robot’s gripper to measure the contact force of the grasping object and estimate the contour of the object.

Originality/value

In this paper, a three-layer interdigital flexible tactile sensor is proposed, and the structural parameters of the interdigital electrode are designed to improve the sensitivity and response speed of the sensor. The indenter with three shapes of the prism, square cylinder and hemisphere is preliminarily designed and the prism indenter with better conduction force is selected through finite element analysis, which can concentrate the external force in the sensing area to improve the sensitivity. The sensor designed in this paper can realize the measurement of contact force, which provides a certain reference for the field of robot tactile.

Details

Sensor Review, vol. 43 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 23 January 2024

Rachael M. Rimmer, Rachel D. Woodham, Sharon Cahill and Cynthia H.Y. Fu

The purpose of this paper was to gain a qualitative view of the participant experience of using home-based transcranial direct current stimulation (tDCS). Acceptability impacts…

Abstract

Purpose

The purpose of this paper was to gain a qualitative view of the participant experience of using home-based transcranial direct current stimulation (tDCS). Acceptability impacts patient preference, treatment adherence and outcomes. However, acceptability is usually assessed by rates of attrition, while multifaceted constructs are not reflected or given meaningful interpretations. tDCS is a novel non-invasive brain stimulation that is a potential treatment for major depressive disorder (MDD). Most studies have provided tDCS in a research centre. As tDCS is portable, the authors developed a home-based treatment protocol that was associated with clinical improvements that were maintained in the long term.

Design/methodology/approach

The authors examined the acceptability of home-based tDCS treatment in MDD through questionnaires and individual interviews at three timepoints: baseline, at a six-week course of treatment, and at six-month follow-up. Twenty-six participants (19 women) with MDD in a current depressive episode of at least moderate severity were enrolled. tDCS was provided in a bifrontal montage with real-time remote supervision by video conference at each session. A thematic analysis was conducted of the individual interviews.

Findings

Thematic analysis revealed four main themes: effectiveness, side effects, time commitment and support, feeling held and contained. The themes reflected the high acceptability of tDCS treatment, whereas the theme of feeling contained might be specific to this protocol.

Originality/value

Qualitative analysis methods and individual interviews generated novel insights into the acceptability of tDCS as a potential treatment for MDD. Feelings of containment might be specific to the present protocol, which consisted of real-time supervision at each session. Meaningful interpretation can provide context to a complex construct, which will aid in understanding and clinical applications.

Details

Mental Health Review Journal, vol. 29 no. 1
Type: Research Article
ISSN: 1361-9322

Keywords

Article
Publication date: 13 September 2022

Xue Chen, Zhaohua Zhang and Yutong Yang

The purpose of this paper is to explore the distribution of local thermal sensitivity of human body heating and the local preferred heating temperature, and the influence of this…

Abstract

Purpose

The purpose of this paper is to explore the distribution of local thermal sensitivity of human body heating and the local preferred heating temperature, and the influence of this sensitive division on thermal response when heating human body in cold environment.

Design/methodology/approach

Eight subjects were invited to use carbon fiber heating patches in an environment of 5 and RH 50%, and eight body parts were selected to explore the heating sensitivity. By measuring the skin temperature and evaluating the subjective thermal sensation and thermal comfort, the thermal sensitivity of local body segments and the influence of single-zone and double-zone heating on human thermal response were explored.

Findings

The sensitivity of local heating on overall thermal sensation (OTS) was foot > back > chest > abdomen > waist > elbow > hand > knee. Both single-zone and double-zone heating can improve the OTS, but double-zone heating can reach thermal neutrality and thermal comfort. In order to prevent the high temperature of heating patches from damaging human body, the local skin temperature should be monitored in the design of local heating clothing, and 39.6 should be taken as the upper limit of local skin temperature.

Originality/value

The results provide a theoretical basis for the selection of heating position in local electric heating clothing (EHC) and the design of intelligent temperature adjustment heating clothing, improve the performance of local EHC and reduce energy consumption.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 29 January 2024

Chang Chen, Yuandong Liang, Jiten Sun, Chen Lin and Yehao Wen

The purpose of this paper is to introduce a variable distance pneumatic gripper with embedded flexible sensors, which can effectively grasp fragile and flexible objects.

Abstract

Purpose

The purpose of this paper is to introduce a variable distance pneumatic gripper with embedded flexible sensors, which can effectively grasp fragile and flexible objects.

Design/methodology/approach

Based on the motion principle of the three-jaw chuck and the pneumatic “fast pneumatic network” (FPN), a variable distance pneumatic holder embedded with a flexible sensor is designed. A structural design plan and preparation process of a soft driver is proposed, using carbon nanotubes as filler in a polyurethane (PU) sponge. A flexible bending sensor based on carbon nanotube materials was produced. A static model of the soft driver cavity was established, and a bending simulation was performed. Based on the designed variable distance soft pneumatic gripper, a real-time monitoring and control system was developed. Combined with the developed pneumatic control system, gripping experiments on objects of different shapes and easily deformable and fragile objects were conducted.

Findings

In this paper, a variable-distance pneumatic gripper embedded with a flexible sensor was designed, and a control system for real-time monitoring and multi-terminal input was developed. Combined with the developed pneumatic control system, a measure was carried out to measure the relationship between the bending angle, output force and air pressure of the soft driver. Flexible bending sensor performance test. The gripper diameter and gripping weight were tested, and the maximum gripping diameter was determined to be 182 mm, the maximum gripping weight was approximately 900 g and the average measurement error of the bending sensor was 5.91%. Objects of different shapes and easily deformable and fragile objects were tested.

Originality/value

Based on the motion principle of the three-jaw chuck and the pneumatic FPN, a variable distance pneumatic gripper with embedded flexible sensors is proposed by using the method of layered and step-by-step preparation. The authors studied the gripper structure design, simulation analysis, prototype preparation, control system construction and experimental testing. The results show that the designed flexible pneumatic gripper with variable distance can grasp common objects.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 August 2023

Dhinesh S.K. and Senthil Kumar Kallippatti Lakshmanan

The purpose of this study is to increasing the gauge factor, reducing the hysteresis error and improving the stability over cyclic deformations of a conductive polylactic acid…

Abstract

Purpose

The purpose of this study is to increasing the gauge factor, reducing the hysteresis error and improving the stability over cyclic deformations of a conductive polylactic acid (CPLA)-based 3D-printed strain sensor by modifying the sensing element geometry.

Design/methodology/approach

Five different configurations, namely, linear, serpentine, square, triangular and trapezoidal, of CPLA sensing elements are printed on the thermoplastic polyurethane substrate material individually. The resistance change ratio of the printed sensors, when loaded to a predefined percentage of the maximum strain values over multiple cycles, is recorded. Finally, the thickness of substrate and CPLA and the included angle of the triangular strain sensor are evaluated for their influences on the sensitivity.

Findings

The triangular configuration yields the least hysteresis error with high accuracy over repeated loading conditions, because of its uniform stress distribution, whereas the conventional linear configuration produces the maximum sensitivity with low accuracy. The thickness of the substrate and sensing element has more influence over the included angle, in enhancing the sensitivity of the triangular configuration. The sensitivity of the triangular configuration exceeds the linear configuration when printed at ideal sensor dimensional values.

Research limitations/implications

The 3D printing parameters are kept constant for all the configurations; rather it can be varied for improving the performance of the sensor. Furthermore, the influences of stretching rate and nozzle temperature of the sensing material are not considered in this work.

Originality/value

The sensitivity and accuracy of CPLA-based strain sensor are evaluated for modification in its geometry, and the performance metrics are enhanced using the regression modelling.

Details

Rapid Prototyping Journal, vol. 29 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 December 2023

Jiaoli Piao, Yehyoun Kim, Ru Han, Darinka Popov and Sumin Koo

An increasing aging population and an increasing number of people suffering from musculoskeletal disorders have increased the demand for wearable robots. Comfortable, wearable…

Abstract

Purpose

An increasing aging population and an increasing number of people suffering from musculoskeletal disorders have increased the demand for wearable robots. Comfortable, wearable robots that can be worn like clothing are currently being investigated. However, the embedded components may be displaced owing to the flexibility of the fabrics, which can lower the sensing accuracy and limit natural body movements. This study aims to develop clothing-type wearable platforms to minimize the displacement of embedded components such as sensors and actuators while maintaining comfort.

Design/methodology/approach

Four designs were developed using materials with different seam lines, that can serve as anchoring details, and flatlock stitches considering body movements and musculoskeletal structures. The wear evaluation experiment was filmed using a speed camera and analyzed using the TimeViewer software and SPSS 26.0. Based on these results, four clothing-type wearable platform designs were developed.

Findings

The variation in the location of a point in the armhole among the designs was marginal. Participants were satisfied with the functionality, practicality, wearability, efficiency and ease of use of the developed designs. A final clothing-type wearable platform was developed by applying a design with the least change in location, a suitable design for each area and wear comfort.

Originality/value

The results of this study contribute to the development of wearable robots by establishing clothing design data to minimize changes in sensor and actuator movements.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 19 March 2024

Serkan Ağseren and Süleyman Şimşek

This study aims to prevent occupational accidents occurring in the manufacturing industry by means of touch sensors. When the occupational accidents occurring in the manufacturing…

Abstract

Purpose

This study aims to prevent occupational accidents occurring in the manufacturing industry by means of touch sensors. When the occupational accidents occurring in the manufacturing industry around the world are examined, it is seen that approximately 88% of occupational accidents occur from “dangerous movement” and 10% from “dangerous situation.” Although some studies related to safety culture studies, safety studies in design and collective or personal protective measures have been started, they have not been brought to an adequate level. It is observed that studies on dangerous movements continue even in many developed countries. In this study, first of all, a literature study was conducted. Occupational accidents experienced in the manufacturing sector in Turkey have been examined. In line with these investigations, a prototype circuit protection system has been developed that can prevent accidents caused by dangerous movement. With the circuit, its applicability and effectiveness were measured by conducting experiments on different manufacturing machines. The prototype circuit applied in this paper was made based on the logic of protective measures made on sawstop machines used in different sectors. In the experimental study conducted, it was observed that in 30 experiments conducted with a prototype on ten separate manufacturing machines, it stopped the machines 26 times at minimum and 29 times at maximum. On average, when looking at the system efficiency values, it was seen that the system was 81.6% effective, and it was observed that positive results could be obtained when converted into a real product.

Design/methodology/approach

In this study, their contribution to the prevention of work accidents caused by presses and rotary accents from machines used in the manufacturing industry by means of touch sensors used in Industry 4.0 was examined.

Findings

With Industry 4.0, different automation systems began to be switched in many areas and sectors. Studies have started on different sensors used also in Industry 4.0 in occupational health and safety studies, but it is seen that they have not been applied at an adequate level. It should be designed in such a way as to prevent errors or stop these errors in the studies performed. Today, sensors are produced at much lower costs than before. In addition, the constantly developing technology provides great convenience for these applications.

Research limitations/implications

This study was applied for press and cylinder machines from manufacturing machines. This study has been tried for machines producing a maximum pressure of 300 tons.

Originality/value

A prototype was designed. Trials were done on some machines by prototype. There could be improve and find different solutions for safety problems in the industry with this perspective.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 22 September 2023

Aying Zhang, Ziyu Xing and Haibao Lu

The purpose of this paper is to study the mechanochemical effect and self-growth mechanism of double-network (DN) gel and to provide a quasiperiodic model for rubber elasticity.

Abstract

Purpose

The purpose of this paper is to study the mechanochemical effect and self-growth mechanism of double-network (DN) gel and to provide a quasiperiodic model for rubber elasticity.

Design/methodology/approach

The chemical reaction kinetics is used to identify the mechanochemical transition probability of host brittle network and to explore the mechanical behavior of endosymbiont ductile network. A quasiperiodic model is proposed to characterize the cooperative coupling of host–endosymbiont networks using the Penrose tiling of a 2 × 2 matrix. Moreover, a free-energy model is formulated to explore the constitutive stress–strain relationship for the DN gel based on the rubber elasticity theory and Gent model.

Findings

In this study, a quasiperiodic graph model has been developed to describe the cooperative interaction between brittle and ductile networks, which undergo the mechanochemical coupling and mechanical stretching behaviors, respectively. The quasiperiodic Penrose tiling determines the mechanochemistry and self-growth effect of DNs.

Originality/value

It is expected to formulate a quasiperiodic graph model of host–guest interaction between two networks to explore the working principle of mechanical and self-growing behavior in DN hydrogels, undergoing complex mechanochemical effect. The effectiveness of the proposed model is verified using both finite element analysis and experimental results of DN gels reported in literature.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 9 October 2023

Goutam Kumar Jana, Sumit Bera, Ribhu Maity, Tithi Maity, Arjun Mahato, Shibayan Roy, Hemakesh Mohapatra and Bidhan Chandra Samanta

The manufacture of polymer composites with a lower environmental footprint requires incorporation of sustainably sourced components. In addition, the incorporation of novel…

Abstract

Purpose

The manufacture of polymer composites with a lower environmental footprint requires incorporation of sustainably sourced components. In addition, the incorporation of novel components should not compromise the material properties. The purpose of this paper is to demonstrate the use of a synthetic amine functional toluidine acetaldehyde condensate (AFTAC) as a modifier for fiber-reinforced epoxy composites. One of the fiber components was sourced from agricultural byproducts, and glass fiber was used as the fiber component for comparison.

Design/methodology/approach

The AFTAC condensate was synthesized via an acid-catalyzed reaction between o-toluidine and acetaldehyde. To demonstrate its efficacy as a toughening agent for diglycidyl ether bisphenol A resin composites and for the comparison of reinforcing materials of interest, composites were fabricated using a natural fiber (mat stick) and a synthetic glass fiber as the reinforcing material. A matched metal die technique was used to fabricate the composites. Composites were prepared and their mechanical and thermal properties were evaluated.

Findings

The inclusion of AFTAC led to an improvement in the mechanical strengths of these composites without any significant deterioration of the thermal stability. It was also observed that the fracture strengths for mat stick fiber-reinforced composites were lower than that of glass fiber-reinforced composites.

Originality/value

To the best of the authors’ knowledge, the use of the AFTAC modifier as well as incorporation of mat stick fibers in epoxy composites has not been demonstrated previously.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 29 November 2023

Rupinder Singh, Gurwinder Singh and Arun Anand

The purpose of this paper is to design and manufacture an intelligent 3D printed sensor to monitor the re-occurrence of diaphragmatic hernia (DH; after surgery) in bovines as an…

Abstract

Purpose

The purpose of this paper is to design and manufacture an intelligent 3D printed sensor to monitor the re-occurrence of diaphragmatic hernia (DH; after surgery) in bovines as an Internet of Things (IOT)-based solution.

Design/methodology/approach

The approach used in this study is based on a bibliographic analysis for the re-occurrence of DH in the bovine after surgery. Using SolidWorks and ANSYS, the computer-aided design model of the implant was 3D printed based on literature and discussions on surgical techniques with a veterinarian. To ensure the error-proof design, load test and strain–stress rate analyses with boundary distortion have been carried out for the implant sub-assembly.

Findings

An innovative IOT-based additive manufacturing solution has been presented for the construction of a mesh-type sensor (for the health monitoring of bovine after surgery).

Originality/value

An innovative mesh-type sensor has been fabricated by integration of metal and polymer 3D printing (comprising 17–4 precipitate hardened stainless steel and polyvinylidene fluoride-hydroxyapatite-chitosan) without sacrificing strength and specific absorption ratio value.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 24