Search results

1 – 10 of over 1000
Article
Publication date: 6 October 2023

Omotayo Farai, Nicole Metje, Carl Anthony, Ali Sadeghioon and David Chapman

Wireless sensor networks (WSN), as a solution for buried water pipe monitoring, face a new set of challenges compared to traditional application for above-ground infrastructure…

Abstract

Purpose

Wireless sensor networks (WSN), as a solution for buried water pipe monitoring, face a new set of challenges compared to traditional application for above-ground infrastructure monitoring. One of the main challenges for underground WSN deployment is the limited range (less than 3 m) at which reliable wireless underground communication can be achieved using radio signal propagation through the soil. To overcome this challenge, the purpose of this paper is to investigate a new approach for wireless underground communication using acoustic signal propagation along a buried water pipe.

Design/methodology/approach

An acoustic communication system was developed based on the requirements of low cost (tens of pounds at most), low power supply capacity (in the order of 1 W-h) and miniature (centimetre scale) size for a wireless communication node. The developed system was further tested along a buried steel pipe in poorly graded SAND and a buried medium density polyethylene (MDPE) pipe in well graded SAND.

Findings

With predicted acoustic attenuation of 1.3 dB/m and 2.1 dB/m along the buried steel and MDPE pipes, respectively, reliable acoustic communication is possible up to 17 m for the buried steel pipe and 11 m for the buried MDPE pipe.

Research limitations/implications

Although an important first step, more research is needed to validate the acoustic communication system along a wider water distribution pipe network.

Originality/value

This paper shows the possibility of achieving reliable wireless underground communication along a buried water pipe (especially non-metallic material ones) using low-frequency acoustic propagation along the pipe wall.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 25 May 2022

Rameesh Lakshan Bulathsinghala, Serosha Mandika Wijeyaratne, Sandun Fernando, Thantirige Sanath Siroshana Jayawardana, Vishvanath Uthpala Indrajith Senadhipathi Mudiyanselage and Samith Lakshan Sunilsantha Kankanamalage

The purpose of this paper is to develop a prototype of a wearable medical device in the form of a bandage with a real-time data monitoring platform, which can be used domestically…

Abstract

Purpose

The purpose of this paper is to develop a prototype of a wearable medical device in the form of a bandage with a real-time data monitoring platform, which can be used domestically for diabetic patients to identify the possibility of foot ulceration at the early stage.

Design/methodology/approach

The prototype can measure blood volumetric change and temperature variation in the forefoot area simultaneously. The waveform extracted using a pulsatile-blood-flow signal was used to assess blood perfusion-related information, and hence, predict ischemic ulcers. The temperature difference between ulcerated and the reference was used to predict neuropathic ulcers. The medical device can be used as a bandage during the application wherein the sensory module is placed inside the hollow pocket of the bandage. A platform was developed through a mobile application where doctors can extract real-time information, and hence, determine the possibility of ulceration.

Findings

The height of the peaks in the pulsatile-blood-flow signal measured from the subject with foot ischemic ulcers is significantly less than that of the subject without ischemic ulcers. In the presence of ischemic ulcers, the captured waveform flattens. Therefore, the blood perfusion from arteries to the tissue of the forefoot is considerably low for the subject with ischemic ulcers. According to the temperature difference data measured over 25 consecutive days, the temperature difference of the subject with neuropathic ulcers occasionally exceeded the 4 °F range but mostly had higher values closer to the 4 °F range. However, the temperature difference of the subject who had no complications of neuropathic ulcers did not exceed the 4 °F range, and the majority of the measurements occupy a narrow range from −2°F to 2 °F.

Originality/value

The proposed prototype of wearable medical apparatus can monitor both temperature variation and pulsatile-blood-flow signal on the forefoot simultaneously and thereby predict both ischemic and neuropathic diabetes using a single device. Most importantly, the wearable medical device can be used domestically without clinical assistance with a real-time data monitoring platform to predict the possibility of ulceration and the course of action thereof.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Open Access
Article
Publication date: 2 January 2024

Eylem Thron, Shamal Faily, Huseyin Dogan and Martin Freer

Railways are a well-known example of complex critical infrastructure, incorporating socio-technical systems with humans such as drivers, signallers, maintainers and passengers at…

Abstract

Purpose

Railways are a well-known example of complex critical infrastructure, incorporating socio-technical systems with humans such as drivers, signallers, maintainers and passengers at the core. The technological evolution including interconnectedness and new ways of interaction lead to new security and safety risks that can be realised, both in terms of human error, and malicious and non-malicious behaviour. This study aims to identify the human factors (HF) and cyber-security risks relating to the role of signallers on the railways and explores strategies for the improvement of “Digital Resilience” – for the concept of a resilient railway.

Design/methodology/approach

Overall, 26 interviews were conducted with 21 participants from industry and academia.

Findings

The results showed that due to increased automation, both cyber-related threats and human error can impact signallers’ day-to-day operations – directly or indirectly (e.g. workload and safety-critical communications) – which could disrupt the railway services and potentially lead to safety-related catastrophic consequences. This study identifies cyber-related problems, including external threats; engineers not considering the human element in designs when specifying security controls; lack of security awareness among the rail industry; training gaps; organisational issues; and many unknown “unknowns”.

Originality/value

The authors discuss socio-technical principles through a hexagonal socio-technical framework and training needs analysis to mitigate against cyber-security issues and identify the predictive training needs of the signallers. This is supported by a systematic approach which considers both, safety and security factors, rather than waiting to learn from a cyber-attack retrospectively.

Details

Information & Computer Security, vol. 32 no. 2
Type: Research Article
ISSN: 2056-4961

Keywords

Article
Publication date: 16 April 2024

Jinwei Zhao, Shuolei Feng, Xiaodong Cao and Haopei Zheng

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and…

Abstract

Purpose

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and systems developed specifically for monitoring health and fitness metrics.

Design/methodology/approach

In recent decades, wearable sensors for monitoring vital signals in sports and health have advanced greatly. Vital signals include electrocardiogram, electroencephalogram, electromyography, inertial data, body motions, cardiac rate and bodily fluids like blood and sweating, making them a good choice for sensing devices.

Findings

This report reviewed reputable journal articles on wearable sensors for vital signal monitoring, focusing on multimode and integrated multi-dimensional capabilities like structure, accuracy and nature of the devices, which may offer a more versatile and comprehensive solution.

Originality/value

The paper provides essential information on the present obstacles and challenges in this domain and provide a glimpse into the future directions of wearable sensors for the detection of these crucial signals. Importantly, it is evident that the integration of modern fabricating techniques, stretchable electronic devices, the Internet of Things and the application of artificial intelligence algorithms has significantly improved the capacity to efficiently monitor and leverage these signals for human health monitoring, including disease prediction.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 21 February 2024

Amruta Rout, Golak Bihari Mahanta, Bibhuti Bhusan Biswal, Renin Francy T., Sri Vardhan Raj and Deepak B.B.V.L.

The purpose of this study is to plan and develop a cost-effective health-care robot for assisting and observing the patients in an accurate and effective way during pandemic…

90

Abstract

Purpose

The purpose of this study is to plan and develop a cost-effective health-care robot for assisting and observing the patients in an accurate and effective way during pandemic situation like COVID-19. The purposed research work can help in better management of pandemic situations in rural areas as well as developing countries where medical facility is not easily available.

Design/methodology/approach

It becomes very difficult for the medical staff to have a continuous check on patient’s condition in terms of symptoms and critical parameters during pandemic situations. For dealing with these situations, a service mobile robot with multiple sensors for measuring patients bodily indicators has been proposed and the prototype for the same has been developed that can monitor and aid the patient using the robotic arm. The fuzzy controller has also been incorporated with the mobile robot through which decisions on patient monitoring can be taken automatically. Mamdani implication method has been utilized for formulating mathematical expression of M number of “if and then condition based rules” with defined input Xj (j = 1, 2, ………. s), and output yi. The inputs and output variables are formed by the membership functions µAij(xj) and µCi(yi) to execute the Fuzzy Inference System controller. Here, Aij and Ci are the developed fuzzy sets.

Findings

The fuzzy-based prediction model has been tested with the output of medicines for the initial 27 runs and was validated by the correlation of predicted and actual values. The correlation coefficient has been found to be 0.989 with a mean square error value of 0.000174, signifying a strong relationship between the predicted values and the actual values. The proposed research work can handle multiple tasks like online consulting, continuous patient condition monitoring in general wards and ICUs, telemedicine services, hospital waste disposal and providing service to patients at regular time intervals.

Originality/value

The novelty of the proposed research work lies in the integration of artificial intelligence techniques like fuzzy logic with the multi-sensor-based service robot for easy decision-making and continuous patient monitoring in hospitals in rural areas and to reduce the work stress on medical staff during pandemic situation.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 5 October 2022

H.P.M.N.L.B. Moragane, B.A.K.S. Perera, Asha Dulanjalie Palihakkara and Biyanka Ekanayake

Construction progress monitoring (CPM) is considered a difficult and tedious task in construction projects, which focuses on identifying discrepancies between the as-built product…

Abstract

Purpose

Construction progress monitoring (CPM) is considered a difficult and tedious task in construction projects, which focuses on identifying discrepancies between the as-built product and the as-planned design. Computer vision (CV) technology is applied to automate the CPM process. However, the synergy between the CV and CPM in literature and industry practice is lacking. This study aims to fulfil this research gap.

Design/methodology/approach

A Delphi qualitative approach was used in this study by conducting two interview rounds. The collected data was analysed using manual content analysis.

Findings

This study identified seven stages of CPM; data acquisition, information retrieval, verification, progress estimation and comparison, visualisation of the results and schedule updating. Factors such as higher accuracy in data, less labourious process, efficiency and near real-time access are some of the significant enablers in instigating CV for CPM. Major challenges identified were occlusions and lighting issues in the site images and lack of support from the management. The challenges can be easily overcome by implementing suitable strategies such as familiarisation of the workforce with CV technology and application of CV research for the construction industry to grow with the technology in line with other industries.

Originality/value

This study addresses the gap pertaining to the synergy between the CV in CPM literature and the industry practice. This research contributes by enabling the construction personnel to identify the shortcomings and the opportunities to apply automated technologies concerning each stage in the progress monitoring process.

Details

Construction Innovation , vol. 24 no. 2
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 8 April 2024

Fei Shang, Bo Sun and Dandan Cai

The purpose of this study is to investigate the application of non-destructive testing methods in measuring bearing oil film thickness to ensure that bearings are in a normal…

Abstract

Purpose

The purpose of this study is to investigate the application of non-destructive testing methods in measuring bearing oil film thickness to ensure that bearings are in a normal lubrication state. The oil film thickness is a crucial parameter reflecting the lubrication status of bearings, directly influencing the operational state of bearing transmission systems. However, it is challenging to accurately measure the oil film thickness under traditional disassembly conditions due to factors such as bearing structure and working conditions. Therefore, there is an urgent need for a nondestructive testing method to measure the oil film thickness and its status.

Design/methodology/approach

This paper introduces methods for optically, electrically and acoustically measuring the oil film thickness and status of bearings. It discusses the adaptability and measurement accuracy of different bearing oil film measurement methods and the impact of varying measurement conditions on accuracy. In addition, it compares the application scenarios of other techniques and the influence of the environment on detection results.

Findings

Ultrasonic measurement stands out due to its widespread adaptability, making it suitable for oil film thickness detection in various states and monitoring continuous changes in oil film thickness. Different methods can be selected depending on the measurement environment to compensate for measurement accuracy and enhance detection effectiveness.

Originality/value

This paper reviews the basic principles and latest applications of optical, electrical and acoustic measurement of oil film thickness and status. It analyzes applicable measurement methods for oil film under different conditions. It discusses the future trends of detection methods, providing possible solutions for bearing oil film thickness detection in complex engineering environments.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 March 2024

Gülçin Baysal

The aim of this review is to present together the studies on textile-based moisture sensors developed using innovative technologies in recent years.

Abstract

Purpose

The aim of this review is to present together the studies on textile-based moisture sensors developed using innovative technologies in recent years.

Design/methodology/approach

The integration levels of the sensors studied with the textile materials are changing. Some research teams have used a combination of printing and textile technologies to produce sensors, while a group of researchers have used traditional technologies such as weaving and embroidery. Others have taken advantage of new technologies such as electro-spinning, polymerization and other techniques. In this way, they tried to combine the good working efficiency of the sensors and the flexibility of the textile. All these approaches are presented in this article.

Findings

The presentation of the latest technologies used to develop textile sensors together will give researchers an idea about new studies that can be done on highly sensitive and efficient textile-based moisture sensor systems.

Originality/value

In this paper humidity sensors have been explained in terms of measuring principle as capacitive and resistive. Then, studies conducted in the last 20 years on the textile-based humidity sensors have been presented in detail. This is a comprehensive review study that presents the latest developments together in this area for researchers.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Open Access
Article
Publication date: 4 April 2024

Weihua Zhang, Yuanchen Zeng, Dongli Song and Zhiwei Wang

The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system. This paper aims to…

Abstract

Purpose

The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system. This paper aims to define and substantiate the assessment of the structural integrity and dynamical integrity of high-speed trains in both theory and practice. The key principles and approaches will be proposed, and their applications to high-speed trains in China will be presented.

Design/methodology/approach

First, the structural integrity and dynamical integrity of high-speed trains are defined, and their relationship is introduced. Then, the principles for assessing the structural integrity of structural and dynamical components are presented and practical examples of gearboxes and dampers are provided. Finally, the principles and approaches for assessing the dynamical integrity of high-speed trains are presented and a novel operational assessment method is further presented.

Findings

Vehicle system dynamics is the core of the proposed framework that provides the loads and vibrations on train components and the dynamic performance of the entire vehicle system. For assessing the structural integrity of structural components, an open-loop analysis considering both normal and abnormal vehicle conditions is needed. For assessing the structural integrity of dynamical components, a closed-loop analysis involving the influence of wear and degradation on vehicle system dynamics is needed. The analysis of vehicle system dynamics should follow the principles of complete objects, conditions and indices. Numerical, experimental and operational approaches should be combined to achieve effective assessments.

Originality/value

The practical applications demonstrate that assessing the structural integrity and dynamical integrity of high-speed trains can support better control of critical defects, better lifespan management of train components and better maintenance decision-making for high-speed trains.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 16 April 2024

Sonali Khatua, Manoranjan Dash and Padma Charan Mishra

Ores and minerals are extracted from the earth’s crust depending on the type of deposit. Iron ore mines come under massive deposit patterns and have their own mine development and…

Abstract

Purpose

Ores and minerals are extracted from the earth’s crust depending on the type of deposit. Iron ore mines come under massive deposit patterns and have their own mine development and life cycles. This study aims to depict the development and life cycle of large open-pit iron ore mines and the intertwined organizational design of the departments/sections operated within the industry.

Design/methodology/approach

Primary data were collected on the site by participant observation, in-depth interviews of the field staff and executives, and field notes. Secondary data were collected from the literature review to compare and cite similar or previous studies on each mining activity. Finally, interactions were conducted with academic experts and top field executives to validate the findings. An organizational ethnography methodology was employed to study and analyse four large-scale iron ore mines of India’s largest iron-producing state, Odisha, from January to April 2023.

Findings

Six stages were observed for development and life cycle, and the operations have been depicted in a schematic diagram for ease of understanding. The intertwined functioning of organizational set-up is also discovered.

Originality/value

The paper will benefit entrepreneurs, mining and geology students, new recruits, and professionals in allied services linked to large iron ore mines. It offers valuable insights for knowledge enhancement, operational manual preparation and further research endeavours.

Details

Journal of Organizational Ethnography, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6749

Keywords

1 – 10 of over 1000