Search results

1 – 10 of 43
Click here to view access options
Article
Publication date: 9 November 2021

Shufeng Li, Di Zhao and Yating Zhou

Concrete-filled steel tube structures are widely used for their high bearing capacity, good plasticity, good fire resistance and optimal seismic performance. In order to…

Abstract

Purpose

Concrete-filled steel tube structures are widely used for their high bearing capacity, good plasticity, good fire resistance and optimal seismic performance. In order to give full play to the advantages of concrete-filled steel tube, this paper proposes a prefabricated concrete-filled steel tube frame joint.

Design/methodology/approach

The concrete-filled steel tube column and beam are connected by high-strength bolted end-plate, and the steel bars in the concrete beam are welded vertically with the end-plates through the enlarged pier head. In addition, the finite element software ABAQUS is used numerically to study the seismic performance of the structure.

Findings

The ductility coefficient of the joint is in 1.72–6.82, and greater than 2.26 as a whole. The equivalent viscous damping coefficient of the joint is 0.13–3.03, indicating that the structure has good energy dissipation capacity.

Originality/value

The structure is convenient for construction and overcomes the shortcomings of the previous on-site welding and on-site concrete pouring. The high-strength bolted end-plate connection can effectively transfer the load, and each component can give play to its material characteristics.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Click here to view access options
Article
Publication date: 11 October 2019

Zijing Wang

Special shaped columns composed of concrete-filled square steel tubes have broad application prospects in steel structure residential buildings. The paper aims to discuss…

Abstract

Purpose

Special shaped columns composed of concrete-filled square steel tubes have broad application prospects in steel structure residential buildings. The paper aims to discuss this issue.

Design/methodology/approach

In this paper, the thermal bridge problem of special-shaped column structures is studied, T-shaped column composed of concrete-filled square steel tubes is taken as an example, the finite element thermal bridge model is established by ANSYS software, the heat treatment is calculated by the software and the results are output.

Findings

According to the finite element results, it can be found that in the thermal bridge model, the temperature distribution is uniform, the heat flux density is small and the heat dissipation where the steel plate locates is serious. The lowest temperature of the thermal bridge is greater than the air condensation temperature, and the affected area is about 0.2 m, which is larger than the thickness of the wall and will not cause too much impact on the wall. It will help to suppress heat dissipation and achieve energy-saving and heat preservation inside the buildings.

Originality/value

The experimental results prove the effectiveness of the special-shaped column structure for building energy-saving buildings. This study provides some theoretical basis for further application of special-shaped column structures in architecture.

Details

International Journal of Building Pathology and Adaptation, vol. 38 no. 3
Type: Research Article
ISSN: 2398-4708

Keywords

Click here to view access options
Article
Publication date: 31 August 2017

Peter Schaumann and Inka Kleibömer

This paper deals with experimental and numerical investigations of the composite behaviour within concrete-filled tubular columns with embedded massive steel core (CFTES…

Abstract

Purpose

This paper deals with experimental and numerical investigations of the composite behaviour within concrete-filled tubular columns with embedded massive steel core (CFTES columns). As the inner profile provides the main load-bearing capacity, the load introduction and transfer is of particular interest for the structural detailing of CFTES columns. Currently, no specific design regulations are available – neither for room temperature nor fire design. The presented investigations provide a basis for design recommendations and numerical approaches on reliable shear stresses.

Design/methodology/approach

Three series of push-out tests at room temperature and high temperatures are analysed in terms of ultimate shear strength, bond strength and shear strength-displacement-curve shape. The test parameters involve the steel core diameter and concrete cover, applying normal strength steel and concrete. Furthermore, a three-dimensional finite element model of the push-out tests is set up in Abaqus. The model implies temperature-dependent contact properties derived from the experimental tests using the cohesive behaviour method.

Findings

The test data reveal a distinctive reduction in both ultimate shear and bond strength for high temperatures. For high temperatures, the thermal expansion coefficients dominate the composite behaviour. Using the 3D numerical model and applying a temperature-dependent joint stiffness, maximum shear stress criterion and damage evolution, the observed composite behaviour can be described in a realistic manner.

Originality/value

The presented experimental investigations are unique, both concerning the investigated column type and performing push-out tests at high temperatures. For the first time, a temperature-dependent reduction of capable shear stresses is identified, which is crucial for the design of structural components.

Details

Journal of Structural Fire Engineering, vol. 9 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Click here to view access options
Article
Publication date: 1 February 2021

Nurizaty Zuhan, Mariyana Aida Ab Kadir, Muhammad Najmi Mohamad Ali Mastor, Shek Poi Ngian and Abdul Rahman Mohd. Sam

Concrete-filled steel hollow (CFHS) column is an innovation to improve the performance of concrete or steel column. It is believed to have high compressive strength, good…

Abstract

Purpose

Concrete-filled steel hollow (CFHS) column is an innovation to improve the performance of concrete or steel column. It is believed to have high compressive strength, good plasticity and is excellent for seismic and fire performance as compared to hollow steel column without a filler.

Design/methodology/approach

Experimental and numerical investigation has been carried out to study the performance of CFHS having different concrete in-fill and shape of steel tube.

Findings

In this paper, an extensive review of experiment performed on CFHS columns at elevated temperature is presented in different types of concrete as filling material. There are three different types of concrete filling used by the researchers, such as normal concrete (NC), reinforced concrete and pozzolanic-fly ash concrete (FC). A number of studies have conducted experimental investigation on the performance of NC casted using recycled aggregate at elevated temperature. The research gap and the recommendations are also proposed. This review will provide basic information on an innovation on steel column by application of in-filled materials.

Research limitations/implications

Design guideline is not considered in this paper.

Practical implications

Fire resistance is an important issue in the structural fire design. This can be a guideline to define the performance of the CFHS with different type of concrete filler at various exposures.

Social implications

Utilization of waste fly ash reduces usage of conventional cement (ordinary Portland cement) in concrete production and enhances its performance at elevated temperature. The new innovation in CFHS columns with FC can reduce the cost of concrete production and at the same time mitigate the environmental issue caused by waste material by minimizing the disposal area.

Originality/value

Review on the different types of concrete filler in the CFHS column. The research gap and the recommendations are also proposed.

Details

Journal of Structural Fire Engineering, vol. 12 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Click here to view access options
Article
Publication date: 17 July 2020

Majid M.A. Kadhim

This paper is aimed at clarifying the behaviour of concrete-filled stainless steel tube (CFSST) slender columns. Based on the review of previous works, it can be found…

Abstract

Purpose

This paper is aimed at clarifying the behaviour of concrete-filled stainless steel tube (CFSST) slender columns. Based on the review of previous works, it can be found that the pieces of research on the behaviour of CFSST slender columns are very rare and the existing studies, to the author’s knowledge, have not covered this topic in greater depth. The purpose of this paper is to investigate the structural response and strength capacity of eccentric loaded long CFSST columns.

Design/methodology/approach

In this paper, a new finite element (FE) model is presented for predicting the nonlinear behaviour of CFSST slender columns under eccentric load. The FE model developed accounts for confinement influences of the concrete in-filled material. In addition, the initial local and overall geometric imperfections were introduced in the numerical model in addition to the inelastic response of stainless steel. The interaction between the stainless section and concrete in-filled was modelled using contact pair algorithm. The FE model was then verified against an experimental work presented in the literature. The ultimate strengths, axial load–lateral displacement and failure mode of CFSST slender columns predicted by the FE model were validated against corresponding experimental results.

Findings

The simulation results show that the improvement in the column strengths (compared to hollow section) is less significant when the composite columns have small width-to-thickness ratio. Finally, comparisons were made between the results obtained from FE simulation and those computed from the Eurocode 4 (EC4). It has been found that the EC4 predictions in most analysed cases are conservative for composite columns analysed under a combination of axial load and uniaxial or biaxial bending. However, the conservatism of the code is reduced with a higher slenderness ratio of the composite columns.

Practical implications

The simulation results throughout this research were compared with the corresponding Eurocode predictions.

Originality/value

This paper provides new findings about the structural behaviour of CFSST columns.

Details

World Journal of Engineering, vol. 17 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Click here to view access options
Article
Publication date: 12 December 2016

Jing-feng Wang, Hai-Tao Wang, Wei-Wei Shi and Hong-Yu Sheng

This paper aims to obtain fire resistance of semi-rigid joints for concrete-filled steel tubular (CFST) composite frames and temperature filed distribution of composite…

Abstract

Purpose

This paper aims to obtain fire resistance of semi-rigid joints for concrete-filled steel tubular (CFST) composite frames and temperature filed distribution of composite joints in fire.

Design/methodology/approach

The temperature filed model of semi-rigid joints to CFST columns with slabs was made by using ABAQUS finite element (FE) software, in considering temperature heating-up stage of fire modelling. The effects of composite slab, fire type and construction location were discussed, and the model was verified by the test results. The temperature distribution of composite joint under three-side or four-side fire condition was studied by the sequentially coupled thermal analysis method. The temperature versus time curves and temperature distribution of various construction and location were analyzed.

Findings

The paper provides FE analysis and numerical simulation on temperature field of semi-rigid joints for CFST composite frames in fire. The effects of composite slab, fire type and construction location were discussed, and the model was verified by the test results. It suggests that the temperature distribution of composite joint in three- or four-side fire condition showed a different development trend.

Research limitations/implications

Because of the chosen FE analysis approach, the research results may lack generalizability. Therefore, researchers are encouraged to test the proposed propositions further.

Practical implications

The research results will become the scientific foundation of mechanical behavior and design method of semi-rigid CFST composite frames in fire.

Originality/value

This paper fulfils an identified need to study the temperature field distribution of the semi-rigid joints to CFST columns and investigate the mechanical behavior of the semi-rigid CFST joints in fire.

Details

Journal of Structural Fire Engineering, vol. 7 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Click here to view access options
Article
Publication date: 30 January 2019

Said Hicham Boukhalkhal, Abd Nacer Touati Ihaddoudène, Luis Filipe Da Costa Neves and Wafa Madi

The purpose of this paper is to investigate the static and dynamic inelastic response of rigid and semi-rigid connections of steel structures with concrete-filled steel

Downloads
113

Abstract

Purpose

The purpose of this paper is to investigate the static and dynamic inelastic response of rigid and semi-rigid connections of steel structures with concrete-filled steel tube (CFST) columns built in high seismic areas, and to compare it with those with open section columns.

Design/methodology/approach

CFST columns are frequently used in moment resistant steel frames located in seismic areas due to their inherent advantages, including their ductility, energy absorption capacity as well as their high bearing capacity. The smart combination of steel and concrete makes it possible to benefit from the advantages of both components to the maximum. This research work presents the nonlinear dynamic response of moment resistant steel frames with CFST columns, with rigid or semi-rigid connections, built in high seismic areas, according to the Algerian seismic code RPA 99/2003, European EC8 and American FEMA 356 to show the nonlinear characteristics of this type of structures, and their advantages over steel frames with open section columns.

Findings

The paper presents the advantages of using CFST columns with rigid and semi-rigid connections on the seismic response of portal steel frames. A high performance level in terms of ductility, plastic hinges distribution and their order of appearance has been obtained. It also shows the low effect of seismic loading on the structural elements with CFST columns compared to structures with open section columns.

Originality/value

The investigation of the numerical results has shown the possibility of their use in the seismic areas for their adequate performance, and also with respect to the design limits specified in the seismic guidelines. In addition, this study represents a first step to develop seismic performance factors for steel structures with CFST columns in Algeria, where the Algerian code do not include a comprehensive specification for the composite steel structures.

Details

International Journal of Structural Integrity, vol. 10 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Click here to view access options
Article
Publication date: 15 June 2011

Ana Espinós, Carmen Ibáñez, Manuel Romero and Antonio Hospitaler

In this paper, the behaviour of slender axially loaded square and circular CFT columns exposed to fire is modelled using the finite element analysis package ABAQUS. A…

Abstract

In this paper, the behaviour of slender axially loaded square and circular CFT columns exposed to fire is modelled using the finite element analysis package ABAQUS. A realistic sequentially coupled nonlinear thermal-stress analysis is conducted for a series of columns available in the literature. By means of this model, a comparison between fire resistance simulations results and experimental tests found in literature is made. Similarly, simulations results are compared to the Eurocode 4 simplified calculation model predictions. Comparisons show that whereas Eurocode 4 predictions are very conservative for both circular and square section CFT columns, the results obtained from the developed numerical model are much more realistic.

Details

Journal of Structural Fire Engineering, vol. 2 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Click here to view access options
Article
Publication date: 20 December 2019

Norashidah Abd Rahman, Siti Amirah Azra Khairuddin, Mohd Faris Faudzi, Mohd Harith Imran Mohd Asri, Norwati Jamaluddin and Zainorizuan Mohd Jaini

Concrete-filled hollow section (CFHS) is widely used in steel construction. The combination of concrete and steel decreases buckling and deformation of steel. However…

Abstract

Purpose

Concrete-filled hollow section (CFHS) is widely used in steel construction. The combination of concrete and steel decreases buckling and deformation of steel. However, studies reveal that using normal concrete increases the dead weight of a structure. Therefore, a lightweight concrete, such as foamed concrete (FC), is proposed to reduce the weight of the structure. The purpose of this study is to determine the strength of modified fibrous foamed CFHS (FCFHS).

Design/methodology/approach

Steel and polypropylene fibres were used with rice husk ash, and short column fibrous FCFHSs were tested under compression load. Greased and non-greased methods were adopted to determine bond strength and confining effect between steel and concrete.

Findings

Results indicate that the use of fibre in FCFHSs improves the strength of CFHS from 9% to 11%. The non-greased method confirms that an interaction exists between steel and concrete with a confinement coefficient of more than 2.0.

Originality/value

It can be shown that the modified fibrous foamed concrete can increase the strength of the concrete and can be used as concrete filled in steel construction industry.

Details

World Journal of Engineering, vol. 17 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Click here to view access options
Article
Publication date: 7 November 2019

Saranya Ilango and Sunil Mahato

Concrete in-filled stainless steel square tubular column combines both the benefits of concrete and steel material, providing enhanced ductility and high compressive…

Abstract

Purpose

Concrete in-filled stainless steel square tubular column combines both the benefits of concrete and steel material, providing enhanced ductility and high compressive strength to the vertical structural members. Other advantages include high stiffness, better resistance to corrosion, increased pace of construction, enhanced bearing capacity, etc. The purpose of this paper is to understand the various behavioural aspects of concrete in-filled cold-formed duplex stainless steel (CI-CFDSS) square tubular column under axial compressive loads and to assess its structural performance.

Design/methodology/approach

In the current paper, the performance of CI-CFDSS square tubular column is numerically investigated under uniform static loading using finite element technique. The numerical study was based on an experimental investigation, which was carried out earlier, in order to study the effects of concrete strength and shape of stainless steel tube on the strength and behaviour of CI-CFDSS square tubular column. The experimental CI-CFDSS square tubular column has a length equal to 450 mm, breadth of 150 mm, width of 150 mm, thickness of 6 mm and a constant ratio of length to overall depth equal to 3. Numerical modelling of the experimental specimen was carried out using ABAQUS software by providing appropriate material properties. Non-linear finite element analysis was performed and the load vs axial deflection curve of the numerical CI-CFDSS square tubular column obtained was validated with the results of the experiment. In order to understand the behaviour of CI-CFDSS square tubular column under axial compressive loads, a parametric study was performed by varying the grade of concrete, type of stainless steel, thickness of stainless steel tube and shape of cross section. From the results, the performance of CI-CFDSS square tubular column was comparatively studied.

Findings

When the grade of concrete was increased the deformation capacity of the CI-CFDSS square tubular column reduced but showed better load carrying capacity. The steel tube made of duplex stainless steel exhibited enhanced performance in terms of load carrying capacity and axial deformation than the other forms, i.e. austenitic and ferritic stainless steel. The most suitable cross section for the CI-CFDSS square tubular column with respect to its performance is rectangular cross section and variation of the steel tube thickness led to the change of overall dimensions of the N-CI-CFDSS-SHS1C40 square tubular column showing marginal difference in performance.

Originality/value

The research work presented in this manuscript is authentic and could contribute to the understanding of the behavioural aspects of CI-CFDSS square tubular column under axial compressive loads.

Details

International Journal of Structural Integrity, vol. 11 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 43